1. \[\lim_{x \to \frac{\pi}{2}^-} \frac{2}{1 + e^{\tan x}} = 0 \]

since as \(x \to \frac{\pi}{2}^- \) we have that \(\tan(x) \to \infty \). Thimeans that \(1 + e^{\tan x} \to \infty \).

2. Find \(\frac{dy}{dx} \) for these functions.

 (a) \(y = e^{x^2+5x}e^{7-x^2} \)
 simplify first. \(y = e^{x^2+5x+7-x^2} = e^{7+5x} \)
 \(y' = 5e^{7+5x} \)

 (b) \(y = \tan(e^{3x^2+4}) \)
 \(y' = \sec^2(e^{3x^2+4}) \cdot 6xe^{3x^2+4} \)

 (c) \(x = e^t + \sec(t^2) \)
 \(y = t^4 + 1 \)
 \[\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \frac{et^{4-1} + 4t^3}{e^t + 2t \sec(t^2) \tan(t^2)} \]

3. Find the tangent line at the point \((0, 2)\) for \(2e^{xy} = x^2 + y \)

 \[2e^{xy} \cdot (1 * y + x * y') = 2x + y' \]

 now you have two choices: 1) solve for \(y' \) and then plug in the values for \(x \) and \(y \), or 2) plug in the values for \(x \) and \(y \) and then solve for \(y' \). I'm going to do the second choice since it is a bit easier.

 \[2e^0 \cdot (2 + 0) = 0 + y' \]
 \[4 = y' \]
 Answer: \(y - 2 = 4(x - 0) \)

4. Find all the points where the tangent line is vertical or horizontal.

 \(x = t^3 - 3t^2 + 5 \)
 \(y = 2t^2 + t \)

 If a tangent line is horizontal then the slope of the tangent line is zero. Since \(\frac{dy}{dx} = \frac{dy}{dt} \frac{dx}{dt} \), this means we are looking for \(\frac{dy}{dt} = 0 \)

 \[\frac{dy}{dt} = 4t + 1 \]
 \[0 = 4t + 1 \]
 \[t = -\frac{1}{4} \]

 Since the problem asks for points, plug the value of \(t \) back into the parametric formulas and solve for \(x \) and \(y \).

 Answer: at the point \((4.796875, -0.125)\) or in fraction form \(\left(\frac{307}{64}, \frac{-1}{8} \right) \)

 If the tangent line is vertical then the slope of the tangent line is undefined. That happens when \(\frac{dx}{dt} = 0 \)
\[
\frac{dx}{dt} = 3t^2 - 6t
\]

0 = 3t(t - 2)

so \(t = 0 \) or \(t = 2 \)

Answers: at the point (5, 0) and at the point (1, 10)

5. Find the equation of the tangent line at the point (3, 1) for the curve

\[
x = t^2 + 2t \\
y = t^3 - t + 1
\]

If this is the point, that means that \(x = 3 \) and \(y = 1 \). We to know the value of \(t \) that makes this happen.

\[
3 = t^2 + 2t \\
0 = t^2 + 2t - 3 \\
0 = (t + 3)(t - 1)
\]

\[
t = -3 \text{ or } t = 1
\]

The only value of \(t \) that works for both \(x \) and \(y \) is \(t = 1 \).

\[
\frac{dy}{dx} \bigg|_{t=1} = \frac{3 - 1}{2 + 2} = \frac{2}{4}
\]

Answer: \(y - 1 = \frac{2}{4}(x - 3) \)