
3/26/2021 Lab7_152SPOverview

localhost:8888/nbconvert/html/EngrMath/Assignments/Fall/Lab7_152SPOverview.ipynb?download=false 1/4

In [2]: from sympy import *

from sympy.plotting import (plot, plot_parametric)

INTRODUCTION TO SERIES IN PYTHON

Recall that a series converges if the sequence of partial sums converges. In addition, we have several convergence tests which are based on the
sequence of the terms of the series (NOTE the distinction between the sequence of terms and the sequence of partial sums!). Therefore, many of the
commands used for sequences in Lab 6 will also be used for series, including the numerical plotting command in the matplotlib.pyplot package. As
done in Lab 6, we simplify our notation below:

In [3]: import matplotlib.pyplot as plt

We can now use the numerical plot command as plt.plot.

NOTE: The example here (and in future overviews) is NOT a copy/paste to solve the problems in lab. However, it will USE many of the features you will
use to solve your problems, such as (in this case) listing sequences and partial sums, plotting sequences and partial sums, summing series, and using
for loops to create recursive sequences.

EXAMPLE 1:

1) Given the series tan(1/n)/n^2, n=1..oo)

a) List the first ten terms of the series and the first ten partial sums

b) Plot the first 50 terms of the series and the first 50 partial sums on the same graph.

c) Show that the series converges by the Integral Test.

d) Use the Remainder Formula for the Integral Test to determine how many terms are needed to sum the series to with 0.001. Check by computing the
partial sum and the actual sum of the series.

For part a), we need to use list comprehension for the terms and a command in the numpy library for the partial sums. NOTE that instead of defining the
expression separately, we could just define

a1_10=[tan(1/n)/n** 2 for i in range(1,11)]

3/26/2021 Lab7_152SPOverview

localhost:8888/nbconvert/html/EngrMath/Assignments/Fall/Lab7_152SPOverview.ipynb?download=false 2/4

In [46]: n=symbols('n',integer=True) #NOTE that we can assume n to be an integer-and also positive if neces

sary

a=tan(1/n)/n**2 #the sequence representing the terms of the series

a1_10=[a.subs(n,i) for i in range(1,11)]

Recall the 'range' command creates a list of integers from 1 INCLUSIVE to 11 EXCLUSIVE

print('The list of terms is',a1_10)

import numpy as np

s1_10=np.cumsum(a1_10)

#cumsum is short for "cumulative summation"-basically the Nth partial sum of the list!

print('The list of partial sums is',s1_10)

We probably want decimal representation of both sequences.

Recall you cannot evalf a list, so it requires list comprehension

afloat=[i.evalf() for i in a1_10]

print('As floating point, the list of terms is',afloat)

sfloat=[i.evalf() for i in s1_10]

print('As floating point, the list of partial sums is',sfloat)

It looks like the terms will approach 0 (fairly obvious, especially if you evalf them), but the partial sums may be approaching 1.77? Let's check the plot in
part b)-remember to use plt.plot to plot lists of values. Also note the 'o' option to plot points rather than connecting them. The r and b refer to the color,
though that is mainly for your view since you are likely printing black & white.

Also, notice that multiple graphs do NOT have to be put in "tuples" unlike symbolic plots!

In [47]: matplotlib notebook

The list of terms is [tan(1), tan(1/2)/4, tan(1/3)/9, tan(1/4)/16, tan(1/5)/25, tan(1/6)/36, tan(1/

7)/49, tan(1/8)/64, tan(1/9)/81, tan(1/10)/100]

The list of partial sums is [tan(1) tan(1/2)/4 + tan(1) tan(1/3)/9 + tan(1/2)/4 + tan(1)

tan(1/4)/16 + tan(1/3)/9 + tan(1/2)/4 + tan(1)

tan(1/5)/25 + tan(1/4)/16 + tan(1/3)/9 + tan(1/2)/4 + tan(1)

tan(1/6)/36 + tan(1/5)/25 + tan(1/4)/16 + tan(1/3)/9 + tan(1/2)/4 + tan(1)

tan(1/7)/49 + tan(1/6)/36 + tan(1/5)/25 + tan(1/4)/16 + tan(1/3)/9 + tan(1/2)/4 + tan(1)

tan(1/8)/64 + tan(1/7)/49 + tan(1/6)/36 + tan(1/5)/25 + tan(1/4)/16 + tan(1/3)/9 + tan(1/2)/4 + ta

n(1)

tan(1/9)/81 + tan(1/8)/64 + tan(1/7)/49 + tan(1/6)/36 + tan(1/5)/25 + tan(1/4)/16 + tan(1/3)/9 + t

an(1/2)/4 + tan(1)

tan(1/10)/100 + tan(1/9)/81 + tan(1/8)/64 + tan(1/7)/49 + tan(1/6)/36 + tan(1/5)/25 + tan(1/4)/16

+ tan(1/3)/9 + tan(1/2)/4 + tan(1)]

As floating point, the list of terms is [1.55740772465490, 0.136575622460948, 0.0384726166122862,

0.0159588700763148, 0.00810840142034690, 0.00467297828617340, 0.00293544815175900, 0.00196336150898

642, 0.00137741515844198, 0.00100334672085451]

As floating point, the list of partial sums is [1.55740772465490, 1.69398334711585, 1.7324559637281

4, 1.74841483380445, 1.75652323522480, 1.76119621351097, 1.76413166166273, 1.76609502317172, 1.7674

7243833016, 1.76847578505101]

3/26/2021 Lab7_152SPOverview

localhost:8888/nbconvert/html/EngrMath/Assignments/Fall/Lab7_152SPOverview.ipynb?download=false 3/4

In [48]: nvals=range(1,51) #again note the exclusive right endpoint!

a1_50=[a.subs(n,i) for i in nvals]

s1_50=np.cumsum(a1_50)

plt.plot(nvals,a1_50,'ro',nvals,s1_50,'bo')

For part c, we just integrate the real-valued function f(x)=atan(1/x)/x^2 to see if it is finite or not.

In [49]: x=symbols('x')

f=tan(1/x)/x**2

IntTest=integrate(f,(x,1,oo))

print('The improper integral converges to',IntTest,'so the series converges')

For part d, recall the Remainder Formala is |S-S_N|<the integral of f(x) from N to oo. So if we can make the larger side (the right-hand side) < .001, we
automatically get the smaller side (the left-hand side) < .001. So following our algorithmic process, we do the following:

a) integrate f from N to infinity

b) solve the integral = .001. NOTE we may have to use nsolve if Python cannot algebraically solve the equation.

In [50]: x=symbols('x',real=True)

N=symbols('N',real=True)

f=tan(1/x)/x**2

ErrBound=integrate(f,(x,N,oo))

eqn=ErrBound-.001

print(eqn)

Nmin=solve(eqn,N)

print('The number of terms needed is at least',Nmin)

Therefore, we need at least 23 terms to sum the series to within .001.

Out[48]: [<matplotlib.lines.Line2D at 0x7f5e6f4fcf60>,

 <matplotlib.lines.Line2D at 0x7f60e59accc0>]

The improper integral converges to log(1 + tan(1)**2)/2 so the series converges

log(tan(1/N)**2 + 1)/2 - 0.001

The number of terms needed is at least [-22.3644069897262, 22.3644069897262]

3/26/2021 Lab7_152SPOverview

localhost:8888/nbconvert/html/EngrMath/Assignments/Fall/Lab7_152SPOverview.ipynb?download=false 4/4

For the rest of part d, use the sum command to compute the 23rd partial sum. There is another command, nsum to try summing the infinite series. To
do this, we need to import it and one other command from the mpmath library:

In [51]: a1_24=[a.subs(n,i).evalf() for i in range(1,24)] #Remember the right endpoint is EXCLUSIVE!!!

S24=sum(a1_24)

print('The approximation S(24) is',S24)

from mpmath import nsum, inf

#The nsum command uses inf for infinity, NOT oo!

The lambda command creates a FUNCTION which is needed for the nsum command

S=nsum(lambda x: tan(1/x)/x**2,[1,inf])

print('The actual sum of the series is about',S)

print('(NOTICE that the series does NOT sum to the same value as the improper integral in part

c!!!)')

print('The difference between S and S(24) is',abs(S-S24))

In []:

The approximation S(24) is 1.77210227292052

The actual sum of the series is about 1.77300752350479

(NOTICE that the series does NOT sum to the same value as the improper integral in part c!!!)

The difference between S and S(24) is 0.000905250584271267

