Math 151 Lab 6

Use Python to solve each problem.

1. Given $f(x)= \begin{cases}x^{2}+5 & \text { if } x<1 \\ (x-2)^{2} & \text { if } x \geq 1\end{cases}$
a) Plot f on the domain $x \in[0,3]$ (NOTE: you do not have to plot any open/closed points, but mentally note where they are!)
b) Use your graph to state (in a print statement) the absolute maximum and absolute minimum of f on $[0,3]$ and the x-values at which they occur.
c) Explain in a print statement why you cannot use the Extreme Value Theorem to answer part b).
2. Given $f(x)=\frac{3 x-4}{x^{2}+1}$:
a) Find the critical values of f (exact and approximate if necessary)
b) Find the absolute maximum and absolute minimum of f on $[-2,2]$.
c) Plot the graph of the function on the interval above.
d) Repeat parts b) and c) on the domain $[-2,4]$.
3. Let $f(x)=100 e^{-x / 10}-0.1 x^{2}$.
a) Find all (approximate) values c which satisfy the Mean Value Theorem on the interval $[0,20]$.
b) Illustrate the MVT by sketching the graph of f, the secant line from $x=0$ to $x=20$, and the tangent line at the c-value(s) found in a). (Problem 4 on the next page)
4. In the figure below, a beam $(\overline{A B})$ is attached to a wall at point A and to point C using a cable, and a weight w is hung at point B. Using principles of statics, the following equations can be used to find the tension T in the cable and the x and y components of the force at point $A\left(A_{x}\right.$ and $\left.A_{y}\right)$:

$$
\begin{gathered}
A_{x}-T \frac{d}{\ell_{c}}=0 \\
A_{y}-T \frac{\sqrt{\ell_{c}^{2}-d^{2}}}{\ell_{c}}-w=0 \\
T \frac{\sqrt{\ell_{c}^{2}-d^{2}}}{\ell_{c}} d-w \ell=0
\end{gathered}
$$

a) Write the forces T, A_{x}, and A_{y} each as functions of the constants d, ℓ_{c}, ℓ, and w.
b) Suppose $\ell=10 \mathrm{ft}, \ell_{c}=5.5 \mathrm{ft}$, and $w=200 \mathrm{lbs}$, so all forces in part a) are functions of d (where the cable attaches to the beam). You know that the force at A is $A=\sqrt{A_{x}^{2}+A_{y}^{2}}$. Print $T(d)$ and $A(d)$ in a print statement and plot both on the domain $d \in[0.5,5]$ (NOTE from the figure that $0<d<\ell_{c}$)
c) Determine the minimum of $T(d)$ on the domain above, as well as where that minimum occurs (approximate).
d) Determine the minimum of $A(d)$ on the domain above, as well as where that minimum occurs (approximate)

