Math 151 Lab 8

Use Python to solve each problem.

1. A styrofoam cup in the shape of the frustrum of a cone has an upper radius twice the lower radius ($R_{2}=2 R_{1}$) and is designed to hold $355 \mathrm{~cm}^{3}$ (12 ounces).

$$
\begin{gathered}
V=\frac{1}{3} \pi h\left(R_{1}^{2}+R_{2}^{2}+R_{1} R_{2}\right) \\
S=\pi\left(R_{1}+R_{2}\right) \sqrt{\left(R_{2}-R_{1}\right)^{2}+h^{2}}+\pi R_{1}^{2}
\end{gathered}
$$

(a) Find the dimensions of the cup $\left(R_{1}, R_{2}\right.$, and h) which minimize the amount of styrofoam used.
(b) Plot $S\left(R_{1}\right)$ in an appropriate domain to verify that your answer in part (a) is indeed a minimum.
2.
(a) Find the antiderivative of $f_{1}(x)=e^{3 x}, f_{2}(x)=e^{-6 x}$, and $f_{3}(x)=e^{-\pi x}$.
(b) Based on your answers to (a), state a general rule for the antiderivative of $f(x)=e^{r x}$.
(c) Find and simplify the derivative of $g(x)=\frac{1}{-2 x} e^{-x^{2}}$. Does your rule in part (b) extend to other functions in the exponent?
3. Given $f^{\prime \prime}(x)=5 x^{3}+6 x^{2}+2$:
(a) If $f(0)=3, f^{\prime}(0)=-2$, find $f^{\prime}(x)$ and $f(x)$
(HINT: Python does NOT include the " $+C$ " when you use integrate, so you have to put it in yourself, then use the initial conditions to find each C. This type of problem is called an initial value problem)
(b) If $f(0)=3, f(1)=-2$, find $f(x)$
(Notice this time you cannot solve for the C values until the end, so give them different names, like $C 1$ and $C 2$, then solve a system of equations for them. This type of problem is called a boundary value problem)

