Spring 2004 Math 253/501–503
14 Vector Calculus
14.3 The Fundamental Theorem for Line Integrals

Tue, 06/Apr ©2004, Art Belmonte

Summary

Framework

Let $E \subset \mathbb{R}^n$ be a subset of n-dimensional space, $f : E \to \mathbb{R}$ a scalar field and, $F : E \to \mathbb{R}^n$ a vector field. Let C, parameterized by $g : [a, b] \to \mathbb{R}^n$, be a smooth curve ($g' \neq 0$) in n-D space whose range is contained in E, so that the compositions $f \circ g$ and $F \circ g$ are defined. Further specifications will be stated below.

Definitions

- For a continuous vector field F, the line integral $\int_C F \cdot dg$ is **independent of path** if $\int_C F \cdot dg = \int_{C_2} F \cdot dg$ for any two paths C_1 and C_2 in E having the same starting points and same ending points.
- A vector field F is **conservative** if $F = \nabla f$; i.e., if F is the gradient of some scalar potential function f.
- A **closed curve** or **closed path** is one for which the starting and ending points are the same; i.e., $g(a) = g(b)$.
- The set E is **open** provided that for each point $a \in E$ there is an open n-ball $B(a; r) = \{x \in \mathbb{R}^n : \|x - a\| < r\}$ that is wholly contained in E.
- A **simple** curve is one that doesn’t intersect itself (except perhaps at its endpoints).
- The set E is **connected** if each pair of points in E may be joined by a path that is entirely contained in E.
- A **simply-connected** plane region D is a connected region with the additional proviso that every simple closed curve in D encompasses only points that are in D. The idea here is that D has no holes and is not separated into pieces.

Theorems

1. **Fundamental Theorem for Line Integrals (FTLI):** With f, C, and g as specified in the framework, suppose further that f is differentiable with continuous gradient ∇f. We then have $\int_C \nabla f \cdot dg = f(g(b)) - f(g(a))$. [Accordingly, line integrals of conservative vector fields are path independent.]

2. The line integral $\int_C F \cdot dg$ is independent of path if and only if $\int_C F \cdot dg = 0$ for every closed path in E.

3. Let F be continuous on an open connected region E and supposed $\int_C F \cdot dg$ is independent of path in E. Then F is conservative; i.e., $F = \nabla f$ for some scalar potential function f.

4. Let $F = [P, Q]$ be conservative and have continuous first order partial derivatives on a plane region D. Then $P_y = Q_x$ on D.

5. Let $F = [P, Q]$ have continuous first order partial derivatives on a simply-connected plane region D. Further suppose that $P_y = Q_x$ on D. Then F is conservative; i.e., $F = \nabla f$ for some scalar potential function f.

Hand Examples

891/2

Determine whether $F = [P, Q] = [3x^2 - 4y, 4y^2 - 2x]$ is a conservative vector field.

Solution

First note that F has continuous first-order partial derivatives on $D = \mathbb{R}^2$, the entire xy-plane. Now $P_y = -4$, whereas $Q_x = -2$. Hence $P_y \neq Q_x$. Thus F is not conservative, lest Theorem 4 in the Summary be violated.

891/9

Determine whether $F = [P, Q] = [ye^x + \sin y, e^x + x \cos y]$ is a conservative vector field. If so, find a potential function f for F; i.e., find f such that $F = \nabla f$.

Solution

First note that F has continuous first-order partial derivatives on $D = \mathbb{R}^2$, the entire xy-plane, a simply-connected region. Furthermore, $P_y = e^x + \cos y = Q_x$. Thus F is conservative by Theorem 5 of the Summary.

- Construct a potential function f for the vector field F; i.e., find f such that $F = \nabla f$. Partially antidifferentiate, then harvest unique terms. (Don’t worry about constants or pseudo-constants.)

<table>
<thead>
<tr>
<th>$F:$</th>
<th>$ye^x + \sin y$</th>
<th>$e^x + x \cos y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nabla f:$</td>
<td>f_x</td>
<td>f_y</td>
</tr>
<tr>
<td>Antidiff</td>
<td>$ye^x + x \sin y$</td>
<td>$ye^x + x \sin y$</td>
</tr>
<tr>
<td>Harvest!</td>
<td>$f(x, y) = ye^x + x \sin y$</td>
<td></td>
</tr>
</tbody>
</table>
Find a potential function \(f \) for \(\mathbf{F} = [4xe^z, \cos y, 2x^2 e^z] \), then use the FTLI to evaluate \(\int_C \mathbf{F} \cdot dg \), where the curve \(C \) is parameterized by \(\mathbf{g}(t) = [t, t^2, t^4], 0 \leq t \leq 1 \).

Solution

- Construct a potential function \(f \) for the vector field \(\mathbf{F} \); i.e., find \(f \) such that \(\mathbf{F} = \nabla f \).

<table>
<thead>
<tr>
<th>(\mathbf{F})</th>
<th>(\nabla f)</th>
<th>Antidiff</th>
<th>Harvest!</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4xe^z)</td>
<td>(f_x)</td>
<td>(2x^2 e^z)</td>
<td></td>
</tr>
<tr>
<td>(\cos y)</td>
<td>(f_y)</td>
<td>(\sin y)</td>
<td></td>
</tr>
<tr>
<td>(2x^2 e^z)</td>
<td>(f_z)</td>
<td>(2x^2 e^z + \sin y)</td>
<td></td>
</tr>
</tbody>
</table>

- Now apply the FTLI.

\[
\int_C \mathbf{F} \cdot dg = \int_C \nabla f \cdot dg = f(g(1)) - f(g(0))
\]

\[
= f(1, 1, 1) - f(0, 0, 0)
\]

\[
= 2e + \sin 1 \approx 6.28
\]

MATLAB Examples

891/2 [revisited]

Determine whether \(\mathbf{F} = [P, Q] = [3x^2 - 4y, 4y^2 - 2x] \) is a conservative vector field.

Solution

Will that dog hunt? That is, does it have potential? If so, the **pot** command returns a potential function \(f \) for \(\mathbf{F} \). If not, it returns 0 [false]. In this case, **pot** returns 0, so that \(\mathbf{F} \) is not conservative (since it has no potential function).

891/9 [revisited]

Determine whether \(\mathbf{F} = [P, Q] = [ye^x + \sin y, e^x + x \cos y] \) is a conservative vector field. If so, find a potential function \(f \) for \(\mathbf{F} \); i.e., find \(f \) such that \(\mathbf{F} = \nabla f \).
Solution

We use \texttt{pot} to find a potential function, then \texttt{FTLI} to apply the Fundamental Theorem for Line Integrals.

\begin{verbatim}
% Stewart 891/20
% sym t x y unreal
v = [x y];
F = [2*y^2 - 12*x^3*y^3 4*x*y - 9*x^4*y^2];
f = pot(F,v); pretty(f)
\end{verbatim}

\begin{verbatim}
24 3
2 y x-3 x y
\end{verbatim}

\begin{verbatim}
% Manually apply the FTLI.
f = inline(char(f), 'x', 'y');
li = f(3,2) - f(1,1)
li =
-1919
\end{verbatim}

\begin{verbatim}
892/24

From a plot of the vector field \(F \) appears below. It looks as if \(F \) is conservative, since around an arbitrary simple closed path, the number and size of \(F \)'s vectors pointing in a given direction is the same as the number and size of \(F \)'s vectors pointing in the opposite direction.

By finding a potential function \(f \) for \(F \), we see that \(F \) is indeed conservative.

\begin{romanlist}
\item \begin{verbatim}
% Stewart 891/24
% sym t x y unreal
v = [x y];
F = [2*x*y + sin(y) x^2 + x*cos(y)];
f = pot(F,v); pretty(f)
\end{verbatim}

\begin{verbatim}
2
x y + x sin(y)
\end{verbatim}

\begin{verbatim}
\end{verbatim}
\end{romanlist}