• In Calculus 2, the average value of \(f(x) \) on the interval \(I = [a, b] \) is

\[
f_{\text{ave}} = \frac{\int_a^b f(x) \, dx}{b - a}.
\]

Here \(b - a \) is the length of \(I \), the measure of how big the interval of integration is.

• Similarly, in Calculus 3, the average value of \(f(x, y) \) over the region \(D \) in the \(xy \)-plane is defined by

\[
f_{\text{ave}} = \frac{\iint_D f(x, y) \, dA}{\text{area of } D} = \frac{\iint_D f(x, y) \, dA}{\iint_D 1 \, dA}.
\]

Here, the area of \(D \) is \(\iint_D 1 \, dA \), the measure of how big the region \(D \) is, since

\[
\iint_D 1 \, dA = \lim_{\|P\| \to 0} \sum_{i=1}^m \sum_{j=1}^n 1 \Delta x_i \Delta y_j.
\]

• Analogously, the average value of \(f(x, y, z) \) over the solid \(E \) in \(xyz \)-space is defined by

\[
f_{\text{ave}} = \frac{\iiint_E f(x, y, z) \, dV}{\text{volume of } E} = \frac{\iiint_E f(x, y, z) \, dV}{\iiint_E 1 \, dV}.
\]

Here, the volume of \(E \) is \(\iiint_E 1 \, dV \), the measure of how big the solid \(E \) is, since

\[
\iiint_E 1 \, dV = \lim_{\|P\| \to 0} \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^q 1 \Delta x_i \Delta y_j \Delta z_k.
\]

• In summary, the average value is the integral of the function divided by the measure.

Measure differentials

Here are area and volume differentials in different coordinate systems that we’ll encounter in this chapter. They may be permuted.

- \(dA = dx \, dy = r \, dr \, d\theta = J \, du \, dv \)
- \(dV = dx \, dy \, dz = r \, dz \, dr \, d\theta = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = J \, du \, dv \, dw \)