Section 3.1

1. [144/8] Solve \(y'' - 2y' - 2y = 0 \) via \texttt{deSolve}, then semiautomatically.

2. [144/20] Solve \(2y'' - 3y' + y = 0, \ y(0) = 2, \ y'(0) = \frac{1}{2} \), via \texttt{deSolve}, then semiautomatically. Determine the maximum value of the solution as well as the point when the solution is zero. Plot the solution.

Section 3.2

1. [155/6] Find the Wronskian matrix and determinant for the pair of functions \(\cos^2 \theta, 1 + \cos 2\theta \). Simplify the latter via \texttt{tCollect}, a trigonometric simplification command.

2. [155/9] Use the linear Existence and Uniqueness Theorem (EUT) to determine the largest interval for which the specified initial value problem (IVP) has a unique solution. (You don’t need to solve the IVP.)

\[
t(t - 4)y'' + 3ty' + 4y = 2, \quad y(3) = 0, \quad y'(3) = -1
\]

3. [156/18] If the Wronskian determinant of \(f \) and \(g \) is \(r^2 e^t \) and \(f(t) = t \), find \(g(t) \).

4. [156/24] Verify that \(y_1 = \cos 2t \) and \(y_2 = \sin 2t \) are solutions of \(y'' + 4y = 0 \). Do they constitute a fundamental set of solutions?

5. [156/26] Same drill as #4 for \(y_1 = x \) and \(y_2 = xe^x \) with \(x^2y'' - x(x + 2)y' + (x + 2)y = 0, \ x > 0 \).

Section 3.3

Do these semiautomatically. Check with \texttt{deSolve} as a first resort or else via \texttt{lldoeval} and substitution.

1. [164/16] Find the general solution of the differential equation \(y'' + 4y' + \frac{25}{4}y = 0 \).

2. [164/18] Solve the initial value problem

\[
y'' + 4y' + 5y = 0, \quad y(0) = 1, \quad y'(0) = 0.
\]

3. [166/36] Find the general solution of the Cauchy-Euler equation \(r^2y'' + 4ty' + 2y = 0, \ t > 0 \).

Section 3.4

Do these semiautomatically. Check with \texttt{deSolve} as a first resort or else via \texttt{lldoeval}, etc.

1. [173/8] Find the general solution of the differential equation \(16y'' + 24y' + 9y = 0 \).

2. [174/24] Find the general solution of the Cauchy-Euler equation \(t^2y'' + 2ty' - 2y = 0, \ t > 0 \).

3. [175/44] Find the general solution of the Cauchy-Euler equation \(4t^2y'' - 8ty' + 9y = 0, \ t > 0 \).

4. [166/42] Find the general solution of the Cauchy-Euler equation \(t^2y'' + 7ty' + 10y = 0, \ t > 0 \).

5. [174/27] Given that \(y_1 = \sin (x^2) \) is a solution of the differential equation \(xy'' - y' + 4x^3y = 0, \ x > 0 \), find a second linearly independent solution via reduction of order (use \texttt{Lroof}, “reduction of order formula”). Then give the general solution.

Section 3.5

Use MUC (Method of Undetermined Coefficients) to solve these problems semiautomatically. Check with \texttt{deSolve}, seasoned with \texttt{tCollect} and/or \texttt{expand} when needed!

1. [184/2] Find the general solution of the differential equation \(y'' + 2y' + 5y = 3\sin 2t \).

2. [184/4] Same as #1 for \(y'' + y' - 6y = 12e^{3t} + 12e^{-2t} \).

3. [184/6] Same as #1 for \(y'' + 2y' = 3 + 4\sin 2t \).

4. [184/18] Solve the initial value problem

\[
y'' - 2y' - 3y = 3te^{2t}, \quad y(0) = 1, \quad y'(0) = 0.
\]

5. [184/15-alt] Same as #1 for

\[
y'' + y' - 2y = 3t^2 - 4t + 8.
\]

Section 3.6

Use VOP (Variation of Parameters) to solve these problems semiautomatically. Check with \texttt{deSolve} as a first resort or else via \texttt{lldoeval}.

1. [190/6] Find a general solution for \(y'' + 9y = 9\sec^2 3t, \ 0 < t < \pi/6 \).

2. [190/10] Same as #1 for \(y'' - 2y' + y = \frac{e^t}{1 + t^2}, \ t \in \mathbb{R} \).
Section 3.7

1. [203/4] Given \(u = -2 \cos \pi t - 3 \sin \pi t \), determine the natural frequency \(\omega_0 \), amplitude \(R \), and phase \(\delta \) so as to write \(u \) in the form \(u = R \cos (\omega_0 t - \delta) \). In general, let \(u = A \cos (\omega_0 t) + B \sin (\omega_0 t) \). Then \(R = \sqrt{A^2 + B^2} \) and \(\tan \delta = B/A \), with \(\delta \) in the appropriate quadrant as determined by the signs of \(A \) and \(B \).

2. [203/7] A mass weighing 3 lb stretches a spring 3 inches or \(\frac{1}{4} \) ft. The mass is pushed upward, contracting the spring a distance of 1 inch or \(\frac{1}{12} \) ft, then set in motion with a downward velocity of 2 ft/s. If there is no damping, find the position \(u \) of the mass at any time \(t \). Also determine the frequency, period, amplitude, and phase of the motion.

3. [204/8] A series electric circuit has a capacitor of \(C = \frac{1}{2} \times 10^{-6} \) F (farads) and an inductor of \(L = 1 \) H (henries). If the initial charge on the capacitor is \(Q(0) = Q_0 = 10^{-5} \) C (coulombs), and no initial current \(Q'(0) = I(0) = I_0 = 0 \) A (amperes), find the charge \(Q \) on the capacitor at any time \(t \).

4. [204/11] A spring is stretched 10 cm = \(\frac{1}{10} \) m by a force of 3 N. A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass is 5 m/s. If the mass is pulled down 5 cm = \(\frac{1}{20} \) m below its equilibrium position and given an initial downward velocity of 10 cm/s = \(\frac{1}{10} \) m/s, determine its position \(u \) at any time \(t \). Find the quasi frequency \(\mu \) as well as the ratio \(\mu / \omega_0 \) of \(\mu \) to the natural frequency \(\omega_0 \) of the corresponding undamped motion.

5. [206/29] The position of a certain spring-mass system satisfies the initial value problem \(u'' + \frac{1}{4} u' + 2u = 0 \), \(u(0) = 0 \), \(u'(0) = 2 \).

 (a) Solve the initial value problem.

 (b) Plot \(u \) versus \(t \) and \(u' \) versus \(t \) on the same axes.

 (c) Parametrically plot \(u' \) vs \(u \) in the phase plane.

Section 3.8

1. [217/4] Write \(\sin 3t + \sin 4t \) as a product of two trigonometric functions of different frequencies via a trigonometric identity.

2. [217/8] A mass of 5 kg stretches a spring 10 cm or \(\frac{1}{10} \) m. The mass is acted on by an external force of \(F(t) = 10 \sin (t/2) \) N and moves in a medium that imparts a viscous force of 2 N when the speed of the mass is 4 cm/s = \(\frac{1}{10} \) m/s. The mass is set in motion from its equilibrium position with an initial velocity of 3 cm/s = \(\frac{3}{100} \) m/s.

 (a) Find the position \(u \) of the mass at any time \(t \).

 (b) Identify the transient and steady state parts of the solution.

 (c) Plot the graph of the solution.

3. [217/10] A mass that weighs 8 lb stretches a spring 6 inches or \(\frac{1}{2} \) ft. The system is acted upon by an external force of \(F(t) = 8 \sin 8t \) lb. The mass is pulled down 3 inches or \(\frac{1}{4} \) ft and then released.

 (a) Determine the position \(u \) at any time \(t \).

 (b) Determine the first four times at which the velocity of the mass is zero.

 (c) Note the phenomenon exhibited.

4. [218/18] Consider the forced but undamped system described by the initial value problem
 \[u'' + u = 3 \cos \omega t, \quad u(0) = 0, \quad u'(0) = 0. \]

 (a) Find the solution for \(\omega \neq 1 \).

 (b) The natural frequency of the unforced system is \(\omega_0 = 1 \). Show this.

 (c) Plot the solution \(u \) versus \(t \) for \(\omega = \frac{9}{10} \).

 (d) Note the phenomenon exhibited.