1. Determine whether \(S = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : x_1 + x_2 = 0 \right\} \) is a subspace of \(\mathbb{R}^2 \). Prove your answer.

- \(S \) is nonempty since \(0 \in S \).
- Let \(\alpha \in \mathbb{R} \) and \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in S \). Then \(x_1 + x_2 = 0 \) and \(\alpha x = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \end{bmatrix} \) with \(\alpha x_1 + \alpha x_2 = \alpha (x_1 + x_2) = \alpha (0) = 0 \). So \(\alpha x \in S \). Therefore \(S \) is closed under scalar multiplication.
- Let \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \) and \(y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \) be vectors in \(S \). Then \(x_1 + x_2 = 0 \) and \(y_1 + y_2 = 0 \). Therefore, \(x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix} \) and \((x_1 + y_1) + (x_2 + y_2) = x_1 + x_2 + y_1 + y_2 = 0 + 0 = 0\).

Hence \(x + y \in S \). Thus \(S \) is closed under vector addition.
- Accordingly, \(S \) is a subspace of \(\mathbb{R}^2 \).

2. Let \(A = \begin{bmatrix} 1 & 3 & 1 & 3 & 4 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 5 & 5 & 5 \\ 0 & 0 & 4 & 4 & 4 \end{bmatrix} \).

(a) Find a basis for \(N(A) \), the null space of \(A \).

- The reduced row-echelon form of \(A \) is \(U = \begin{bmatrix} 1 & 3 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \). Let \(x \in N(A) \).

Then \(x_1 + 3x_2 + 2x_4 + 3x_5 = 0 \) and \(x_3 + x_4 + x_5 = 0 \). So \(x \) has the form

\[
\begin{bmatrix} -3r - 2s - 3t \\ r \\ -s - t \\ s \\ t \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -2 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} t + \begin{bmatrix} -3 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \]

where the indicated \(v_1, v_2, v_3 \) form a basis for \(N(A) \), whose dimension is 3.

(b) Find a basis for the column space of \(A \). What is the rank of \(A \)?

- The first and third columns of \(U \) form a basis for the column space of \(U \). Since \(A \) is row equivalent to \(U \), the corresponding columns of \(A \) form a basis for the column space of \(A \); namely,

\[
\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 5 \\ 4 \end{bmatrix}.

- The rank of \(A \) is the dimension of its row space. This is the number of nonzero rows in \(U \), the reduced row echelon form of \(A \), namely 2. (Recall from Section 3.6 that the row and column space of a matrix have the same dimension. Indeed, there are two vectors in the basis for the column space of \(A \) from the preceding item.)

3. Answer the following questions and, in each case, give geometric explanations for your answers.

(a) Is it possible to have a pair of one-dimensional subspaces \(U_1 \) and \(U_2 \) of \(\mathbb{R}^3 \) such that their intersection \(U_1 \cap U_2 \) is \(\{0\} \), the set consisting solely of the zero vector?

- Yes, it is possible. Let \(z \in U_1 \cap U_2 \) where

\[
U_1 = \left\{ v \in \mathbb{R}^3 : v = \begin{bmatrix} s \\ 0 \\ 0 \end{bmatrix}, s \in \mathbb{R} \right\} \text{ and } U_2 = \left\{ w \in \mathbb{R}^3 : w = \begin{bmatrix} 0 \\ t \\ 0 \end{bmatrix}, t \in \mathbb{R} \right\}.
\]

Then \(\begin{bmatrix} 0 \\ 0 \\ s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ t \end{bmatrix} \). So \(s = t = 0 \) and thus \(z = 0 \). Therefore \(U_1 \cap U_2 = \{0\} \).

- Geometrically, \(U_1 \) is the \(x \)-axis and \(U_2 \) is the \(y \)-axis in 3-D space, where we identify position vectors with points. The origin is the intersection of these two straight lines.

(b) Is it possible to have a pair of two-dimensional subspaces \(V_1 \) and \(V_2 \) of \(\mathbb{R}^3 \) such that their intersection \(V_1 \cap V_2 \) is \(\{0\} \), the set consisting solely of the zero vector?

- No, it is not possible. Geometrically, a two-dimensional subspace of \(\mathbb{R}^3 \) is a plane that contains the origin. Two such planes intersect in a line through the origin, a one-dimensional subspace of \(\mathbb{R}^3 \), not \(\{0\} \), a zero-dimensional subspace.
4. Let \(\{u_1, u_2\} \) and \(\{v_1, v_2\} \) be ordered bases for \(\mathbb{R}^2 \), where
\[
\begin{align*}
 u_1 &= \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \\
 u_2 &= \begin{bmatrix} 2 \\ 7 \end{bmatrix}, \\
 v_1 &= \begin{bmatrix} 5 \\ 2 \end{bmatrix}, \\
 v_2 &= \begin{bmatrix} 4 \\ 9 \end{bmatrix}.
\end{align*}
\]
(a) Determine the transition matrix \(S \) from the standard basis \(\{e_1, e_2\} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \) to the ordered basis \(\{u_1, u_2\} \). Use \(S \) to find the coordinates of \(x = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) with respect to \(\{u_1, u_2\} \).

- In the nomenclature of Section 3.5 (q.v.), we have \(e = Uu \). So the transition matrix from \(\{u_1, u_2\} \) to \(\{e_1, e_2\} \) is
\[
U = [u_1, u_2] = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix}.
\]
- Now \(Uu = e \) implies \(u = U^{-1}e \). So the transition matrix from \(\{e_1, e_2\} \) to \(\{u_1, u_2\} \) is \(S = U^{-1} = \begin{bmatrix} 7 & -2 \\ -3 & 1 \end{bmatrix} \).
- The coordinates of \(x = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) with respect to \(\{u_1, u_2\} \) are
\[
[x]_U = u = U^{-1}e = S[x]_E
= \begin{bmatrix} 7 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}
= \begin{bmatrix} 5 \\ -2 \end{bmatrix}.
\]
- (You may optionally check this.)
\[
5u_1 - 2u_2 = 5 \begin{bmatrix} 1 \\ 3 \end{bmatrix} - 2 \begin{bmatrix} 2 \\ 7 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = [x]_E
\]

(b) Determine the transition matrix \(T \) from the ordered basis \(\{v_1, v_2\} \) the ordered basis \(\{u_1, u_2\} \). Use \(T \) to find the coordinates of the vector \(z = 2v_1 + 3v_2 \) with respect to \(\{u_1, u_2\} \).

- In the nomenclature of Section 3.5 (q.v.), we have \(Uu = Vv \). Thus \(u = U^{-1}Vv \). So the transition matrix from \(\{v_1, v_2\} \) to \(\{u_1, u_2\} \) is \(T = U^{-1}V = SV \) or
\[
T = \begin{bmatrix} 7 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 2 & 9 \end{bmatrix}
= \begin{bmatrix} 31 & 10 \\ -13 & -3 \end{bmatrix}.
\]
- The coordinates of \(z = 2v_1 + 3v_2 \) with respect to \(\{u_1, u_2\} \) are
\[
[z]_U = u = U^{-1}Vv = T[z]_V
= \begin{bmatrix} 31 & 10 \\ -13 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}
= \begin{bmatrix} 92 \\ -35 \end{bmatrix}.
\]
- (You may optionally check this.)
\[
2v_1 + 3v_2 = 2 \begin{bmatrix} 5 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 4 \\ 9 \end{bmatrix} = \begin{bmatrix} 22 \\ 31 \end{bmatrix} = [z]_E
\]
\[
92u_1 - 35u_2 = 92 \begin{bmatrix} 1 \\ 3 \end{bmatrix} - 35 \begin{bmatrix} 2 \\ 7 \end{bmatrix} = \begin{bmatrix} 22 \\ 31 \end{bmatrix} = [z]_E
\]

5. Let \(L \) be a linear operator on \(\mathbb{R}^2 \) and let \(v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \), \(v_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \), and \(v_3 = \begin{bmatrix} 1 \\ 7 \end{bmatrix} \). If \(L(v_1) = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \) and \(L(v_2) = \begin{bmatrix} -3 \\ 1 \end{bmatrix} \), find the value of \(L(v_3) \).

- Since \(\mathbb{R}^2 \) has dimension 2 and \(v_1 \) and \(v_2 \) are linearly independent, \(\{v_1, v_2\} \) is an ordered basis for \(\mathbb{R}^2 \).
- Express \(v_3 \) as \(\alpha v_1 + \beta v_2 \) by solving a linear system. \[
\begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & 7 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & 3 \\ 1 & 2 & 7 \end{bmatrix}
\]
Thus \(v_3 = 3v_1 + 2v_2 \), as you can verify.
- Since \(L \) is a linear operator, we have
\[
L(v_3) = L(3v_1 + 2v_2)
= 3L(v_1) + 2L(v_2)
= 3 \begin{bmatrix} 2 \\ 5 \end{bmatrix} + 2 \begin{bmatrix} -3 \\ 1 \end{bmatrix}
= \begin{bmatrix} 0 \\ 17 \end{bmatrix}.
\]

6. Let \(A \) and \(B \) be similar matrices. Show that \(\det(A) = \det(B) \).

- Since \(B \) is similar to \(A \), we have \(B = S^{-1}AS \) for some nonsingular matrix \(S \).
- Therefore,
\[
\det(B) = \det(S^{-1}AS)
= \det(S^{-1}) \det(A) \det(S)
= \det(S^{-1}) \det(S) \det(A)
= \det(S^{-1}S) \det(A)
= \det(I) \det(A)
= \det(A).
\]
- Hence \(\det(A) = \det(B) \).