1. Let \(\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) and \(\mathbf{y} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \).

(a) Find the vector projection \(\mathbf{p} \) of \(\mathbf{x} \) onto \(\mathbf{y} \).

- The standard scalar (dot) product in \(\mathbb{R}^n \) is \(\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v} \). The vector projection is

\[
\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{y}, \mathbf{y} \rangle} \mathbf{y} = \frac{6}{18} \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4/3 \\ 1/3 \\ 0 \end{bmatrix}.
\]

(b) Verify that \(\mathbf{q} = \mathbf{x} - \mathbf{p} \) is orthogonal to \(\mathbf{p} \).

- Now \(\mathbf{q} = \begin{bmatrix} -1/3 \\ 2/3 \\ 2/3 \end{bmatrix} \), whence \(\langle \mathbf{p}, \mathbf{q} \rangle = 0 \).

Thus \(\mathbf{p} \) and \(\mathbf{q} \) are orthogonal.

(c) Verify the Pythagorean Law holds for \(\mathbf{p}, \mathbf{q}, \mathbf{x} \).

- The standard norm is \(\| \mathbf{v} \| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} \). So \(\| \mathbf{p} \|^2 + \| \mathbf{q} \|^2 = (\sqrt{2})^2 + (\sqrt{2})^2 = 2^2 = \| \mathbf{x} \|^2 \). The Pythagorean Law is satisfied.

2. Let \(S \) be the 2-dimensional subspace of \(\mathbb{R}^3 \) spanned by \(\mathbf{x}_1 \) and \(\mathbf{x}_2 \), the columns of \(\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 4 & 1 \\ 3 & 1 \end{bmatrix} \).

(a) Find a basis for \(S^\perp \), the orthogonal complement of \(S \). Recall \(S^\perp = N(\mathbf{A}^T) \).

- The reduced row echelon form of \(\mathbf{A}^T \) is

\[
\begin{bmatrix}
1 & 0 & 1/2 \\
0 & 1 & 1/2
\end{bmatrix}
\].

For \(\mathbf{v} \in N(\mathbf{A}^T) \) we have \(v_1 = -\frac{1}{2}v_3 \) and \(v_2 = -\frac{1}{2}v_3 \). Accordingly, let \(\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \). Then \(\{ \mathbf{v} \} \) is a basis for \(S^\perp = \text{Span} \{ \mathbf{v} \} \), a one-dimensional subspace of \(\mathbb{R}^3 \).

(b) Give a geometric description of \(S \) and \(S^\perp \).

- \(S \) is a plane through the origin in 3D space and \(S^\perp \) is a line through the origin that is perpendicular to this plane. [More precisely, the plane may be parametrically specified as \(t \mathbf{x}_1 + u \mathbf{x}_2, \ t, u \in \mathbb{R} \) or else \(x + y - 2z = 0 \) using Cartesian coordinates since \(\mathbf{v} \) is normal to the plane. The line is given by \(s \mathbf{v}, \ s \in \mathbb{R} \); i.e., \(x = s, \ y = s, \ z = -2s \). See plot at end!]

3. Let \(\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} \) and \(\mathbf{b} = \begin{bmatrix} 12 \\ 6 \\ 18 \end{bmatrix} \).

(a) Use the QR command on your calculator to factor \(\mathbf{A} = \mathbf{QR} \) into the product of a matrix \(\mathbf{Q} \) with orthonormal columns and an upper triangular matrix \(\mathbf{R} \).

- We have \(\mathbf{Q} = \begin{bmatrix} 2/3 & -\sqrt{2}/6 \\ 1/3 & \sqrt{2}/3 \\ 2/3 & -\sqrt{2}/6 \end{bmatrix} \) and

\[
\mathbf{R} = \begin{bmatrix} 3 & 5/3 \\ 0 & \sqrt{2}/3 \end{bmatrix}.
\]

(b) Use the QR factorization to find the least squares solution of the system \(\mathbf{A} \mathbf{x} = \mathbf{b} \).

- The least squares solution is \(\hat{\mathbf{x}} = \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{b} = \begin{bmatrix} 9 \\ -3 \end{bmatrix} \).

4. Consider the vector space \(C[-1, 1] \) of continuous functions on \([-1, 1] \) with inner product defined by \(\langle f, g \rangle = \int_{-1}^{1} f(x) g(x) \, dx \).

(a) Show that \(u_1(x) = \frac{1}{\sqrt{2}} \) and \(u_2(x) = \frac{\sqrt{6}}{2} x \) form an orthonormal set of vectors.

- Using the given inner product and its standard norm \(\| f \| = \sqrt{\langle f, f \rangle} \), we have \(\langle u_1, u_2 \rangle = 0, \| u_1 \| = 1, \) and \(\| u_2 \| = 1 \). Hence \(u_1 \) and \(u_2 \) form an orthonormal set of vectors.

(b) Use part (a) to find the best least squares approximation to \(h(x) = x^3 - 2x \) by a linear function on \([-1, 1] \).

- We have \(c_1 = \langle h, u_1 \rangle = 0 \) and \(c_2 = \langle h, u_2 \rangle = -\frac{7}{8} \sqrt{6} \). The desired linear function is

\[
L(x) = c_1 u_1(x) + c_2 u_2(x) = -\frac{7}{8} x,
\]

a graph of which appears below along with that of \(h(x) \).
5. Let \(\mathbf{x} \) and \(\mathbf{y} \) be nonzero vectors in \(\mathbb{R}^n \) and \(\mathbf{Q} \) be an \(n \times n \) orthogonal matrix. If \(\mathbf{w} = \mathbf{Qx} \) and \(\mathbf{z} = \mathbf{Qy} \), show that the angle between \(\mathbf{w} \) and \(\mathbf{z} \) is equal to the angle between \(\mathbf{x} \) and \(\mathbf{y} \). Proceed as follows.

(a) Let \((\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{v}\) be the standard inner product on \(\mathbb{R}^n \). Show that \(\langle \mathbf{Qx}, \mathbf{Qy} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle \).

- We have
 \[
 \langle \mathbf{Qx}, \mathbf{Qy} \rangle = (\mathbf{Qx})^T (\mathbf{Qy}) = \mathbf{x}^T \mathbf{Q}^T \mathbf{Qy} = \mathbf{x}^T \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle
 \]
 because \(\mathbf{Q}^T \mathbf{Q} = \mathbf{I} \) since \(\mathbf{Q} \) is an orthogonal matrix.

(b) Let \(\| \mathbf{v} \| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} \) be the standard norm on \(\mathbb{R}^n \). Note that \(\| \mathbf{v} \|^2 = \langle \mathbf{v}, \mathbf{v} \rangle \). Use (a) to show that \(\| \mathbf{Qx} \| = \| \mathbf{x} \| \) (and thus \(\| \mathbf{Qy} \| = \| \mathbf{y} \| \)).

- From part (a), we have
 \[
 \| \mathbf{Qx} \| = \sqrt{\langle \mathbf{Qx}, \mathbf{Qx} \rangle} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \| \mathbf{x} \|.
 \]

(c) Finally, show that angle between \(\mathbf{w} \) and \(\mathbf{z} \) is equal to the angle between \(\mathbf{x} \) and \(\mathbf{y} \).

- The angle between \(\mathbf{w} = \mathbf{Qx} \) and \(\mathbf{z} = \mathbf{Qy} \) is
 \[
 \theta = \cos^{-1} \left(\frac{\langle \mathbf{Qx}, \mathbf{Qy} \rangle}{\| \mathbf{Qx} \| \| \mathbf{Qy} \|} \right)
 = \cos^{-1} \left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\| \mathbf{x} \| \| \mathbf{y} \|} \right),
 \]
 which is the angle between \(\mathbf{x} \) and \(\mathbf{y} \). Here we used the results from parts (a) and (b).

6. Let \(\mathbf{A} = \begin{bmatrix} 4 & -5 & 1 \\
1 & 0 & -1 \\
0 & 1 & -1 \end{bmatrix} \).

(a) Find the eigenvalues of \(\mathbf{A} \) and corresponding eigenvectors.

- The characteristic polynomial of \(\mathbf{A} \) is
 \[
 p(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = -\lambda^3 + 3\lambda^2 - 2\lambda
 \]
 via hand work or the charPoly command on your calculator.

- Eigenvalues of \(\mathbf{A} \) are the zeros of the characteristic polynomial: \(\lambda = 0, 1, 2 \). You may obtain these via factoring or by using the cPolyRoots command on your calculator.

- For \(\lambda = 0 \), the reduced row echelon form of \(\mathbf{A} - \lambda \mathbf{I} \) is
 \[
 \begin{bmatrix} 1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0 \end{bmatrix}.
 \]
 Therefore,
 \[
 u_1 = u_2 = u_3, \text{ whence } \mathbf{u} = \begin{bmatrix} 1 \\
1 \\
1 \end{bmatrix}
 \]
 is an eigenvector associated with \(\lambda = 0 \).

- For \(\lambda = 1 \), the reduced row echelon form of \(\mathbf{A} - \lambda \mathbf{I} \) is
 \[
 \begin{bmatrix} 1 & 0 & -3 \\
0 & 1 & -2 \\
0 & 0 & 0 \end{bmatrix}.
 \]
 Thus
 \[
 v_1 = 3v_3 \text{ and } v_2 = 2v_3, \text{ whence } \mathbf{v} = \begin{bmatrix} 3 \\
2 \\
1 \end{bmatrix}
 \]
 is an eigenvector associated with \(\lambda = 1 \).

- For \(\lambda = 2 \), the reduced row echelon form of \(\mathbf{A} - \lambda \mathbf{I} \) is
 \[
 \begin{bmatrix} 1 & 0 & -7 \\
0 & 1 & -3 \\
0 & 0 & 0 \end{bmatrix}.
 \]
 Hence
 \[
 w_1 = 7w_3 \text{ and } w_2 = 3w_3, \text{ whence } \mathbf{w} = \begin{bmatrix} 7 \\
3 \\
1 \end{bmatrix}
 \]
 is an eigenvector associated with \(\lambda = 2 \).

(b) Factor \(\mathbf{A} \) into a product \(\mathbf{XDX}^{-1} \) where \(\mathbf{X} \) is a nonsingular matrix and \(\mathbf{D} \) is a diagonal matrix.

- Using eigenvalues and eigenvectors from part (a), let \(\mathbf{D} = \begin{bmatrix} 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2 \end{bmatrix} \) and
 \[
 \mathbf{X} = \begin{bmatrix} 1 & 3 & 7 \\
1 & 2 & 3 \\
1 & 1 & 1 \end{bmatrix}.
 \]

- You may (optionally) verify on your calculator that the product \(\mathbf{XDX}^{-1} \),
 \[
 \begin{bmatrix} 1 & 3 & 7 \\
1 & 2 & 3 \\
1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1/2 & -2 & 5/2 \\
1/2 & -1 & 3 \\
1/2 & -1 & 1/2 \end{bmatrix},
 \]
 is equal to \(\mathbf{A} = \begin{bmatrix} 4 & -5 & 1 \\
1 & 0 & -1 \\
0 & 1 & -1 \end{bmatrix} \).