Summary

- The vectors \(v_1, \ldots, v_n \) form a basis for a vector space \(V \) if and only if \(v_1, \ldots, v_n \) are both linearly independent and a spanning set for \(V \).

- If \(\{v_1, \ldots, v_n\} \) is a spanning set for a vector space \(V \), then any collection of \(m \) vectors in \(V \) with \(m > n \) is linearly dependent.

- If a vector space \(V \) has a basis that consists of \(n \) vectors, it is said to be a finite dimensional vector space of dimension \(n \); otherwise it is infinite dimensional. See pages 146–147 for geometrical interpretations. [The zero subspace \(\{0\} \) is said to have dimension 0 (zero).]

- If \(\{v_1, \ldots, v_n\} \) and \(\{u_1, \ldots, u_m\} \) are bases for a vector space, then \(m = n \). That is, each basis of a finite dimensional vector space has the same number of elements.

- If a vector space \(V \) has dimension \(n > 0 \), then
 - 1. any set of \(n \) linearly independent vectors spans \(V \);
 - 2. any \(n \) vectors which span \(V \) are linearly independent.

- If a vector space \(V \) has dimension \(n > 0 \), then
 - 1. no set of fewer than \(n \) vectors spans \(V \);
 - 2. any set of fewer than \(n \) linearly independent vectors can be extended to form a basis for \(V \);
 - 3. any spanning set of \(V \) which contains more than \(n \) vectors can be pared down to form a basis for \(V \).

Examples

149/3

Consider the vectors

\[
x_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad x_2 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 7 \\ -3 \end{bmatrix}.
\]

(a) Show that \(x_1 \) and \(x_2 \) form a basis for \(\mathbb{R}^2 \).

(b) Why must \(x_1, x_2, x_3 \) be linearly dependent?

(c) What is the dimension of \(\text{Span}(x_1, x_2, x_3) \)?

Solution

(a) Let \(A = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \) be the matrix whose columns are \(x_1 \) and \(x_2 \).

- Since \(\det(A) = 6 - 4 = 2 \neq 0 \), the columns of \(A \), \(x_1 \) and \(x_2 \), are linearly independent.

- Let \(b \in \mathbb{R}^2 \). Since \(\det(A) \neq 0 \), the matrix \(A \) is nonsingular. Hence the linear system \(Ax = b \) has the unique solution \(x = A^{-1}b = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \). Thus \(x \) is a linear combination \(w_1 x_1 + w_2 x_2 \) of the columns of \(A \). Since \(b \) was arbitrary, we see \(x_1 \) and \(x_2 \) span \(\mathbb{R}^2 \).

- Inasmuch as \(x_1 \) and \(x_2 \), are linearly independent and span \(\mathbb{R}^2 \), they form a basis for \(\mathbb{R}^2 \).

(b) Since \(x_1 \) and \(x_2 \) span \(\mathbb{R}^2 \), \(x_3 \) is a linear combination of \(x_1 \) and \(x_2 \). So vectors \(x_1, x_2, x_3 \) are linearly dependent.

(c) In light of part (b), the dimension of \(\text{Span}(x_1, x_2, x_3) \) is the same as \(\text{Span}(x_1, x_2) = \mathbb{R}^2 \), which is 2.

149/7

Find a basis for the subspace \(S \) of \(\mathbb{R}^4 \) consisting of all vectors of the form \(\begin{bmatrix} a+b & a-b+2c & b & c \end{bmatrix}^T \), where \(a, b, c \in \mathbb{R} \). What is the dimension of \(S \)?

Solution

(a) Let \(M = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \) be an augmented homogeneous system matrix whose columns are \(v_1, v_2, v_3 \), along with the \(4 \times 1 \) zero column vector. The reduced row echelon form of \(M \) is

\[
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\]

There are no free variables. The only solution is \(k = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T \), signifying that \(v_1, v_2, v_3 \) are linearly independent.

- Let \(v \in S \). Since \(v = av_1 + bv_2 + cv_3 \) is equal to \(\begin{bmatrix} a+b & a-b+2c & b & c \end{bmatrix}^T \), we see that \(v_1, v_2, v_3 \) span \(S \).

- Therefore \(v_1, v_2, v_3 \) form a basis for \(S \).
Let S be the subspace of P_3 consisting of all polynomials of degree < 3 of the form $ax^2 + bx + 2a + 3b$. Determine a basis for S.

Solution

- Let $v_1 = x^2 + 2$ and $v_2 = x + 3$, obtained by partially differentiating the stated form by a, b, respectively.

- If $c_1v_1 + c_2v_2 = z(x)$, the zero polynomial, then $c_1x^2 + c_2x + (2c_1 + 3c_2) = 0x^2 + 0x + 0$ for all x. Equating like coefficients, we have $c_1 = 0$ and $c_2 = 0$. Hence v_1 and v_2 are *linearly independent*.

- Let $v \in S$. Since $v = av_1 + bv_2 = ax^2 + bx + 2a + 3b$, we see that v_1 and v_2 span S.

- Therefore v_1 and v_2 form a *basis* for S.

In $C [-\pi, \pi]$, find the dimension of the subspace spanned by $1, \cos 2x, \cos^2 x$.

Solution

Recall from trigonometry that $\cos 2x = 2\cos^2 x - 1$. Hence the span of the three expressions is the same as that spanned by the pair 1 and $\cos^2 x$. The pair is linearly independent since neither function is a constant multiple of the other. Thus the dimension of this pair and hence that of $1, \cos 2x, \cos^2 x$ is 2.