Math 311: Topics in Applied Math 1
5: Orthogonality
5.2: Orthogonal Subspaces

Summary

- Subspaces X and Y of \(\mathbb{R}^n \) are orthogonal if \(x^T y = 0 \)
 for every vector \(x \in X \) and \(y \in Y \). We write \(X \perp Y \) to signify this. If \(X \perp Y \), then \(X \cap Y = \{0\} \); that is, their intersection consists solely of the zero vector.

- Let \(Y \) be a subspace of \(\mathbb{R}^n \). The orthogonal complement of \(Y \) is
 \[Y^\perp = \{ x \in \mathbb{R}^n : x^T y = 0 \text{ for every } y \in Y \} , \]
 the set of all vectors in \(\mathbb{R}^n \) that are orthogonal to every vector in \(Y \). Note \(Y^\perp \) is also a subspace of \(\mathbb{R}^n \).

- Regard an \(m \times n \) real matrix \(A \) as representing a linear transformation \(L : \mathbb{R}^n \rightarrow \mathbb{R}^m \). Denote the range of \(A \) by \(R(A) \).
 \[R(A) = \{ b \in \mathbb{R}^m : b = Ax \text{ for some } x \in \mathbb{R}^n \} = \text{column space of } A , \text{ a subspace of } \mathbb{R}^m \]

- Similarly, the range of \(A^T \) is a subspace of \(\mathbb{R}^n \).
 \[R(A^T) = \{ y \in \mathbb{R}^n : y = A^T x \text{ for some } x \in \mathbb{R}^m \} = \text{column space of } A^T , \text{ a subspace of } \mathbb{R}^n \]

- Fundamental Subspaces Theorem
 If \(A \) is an \(m \times n \) real matrix, then
 \[N(A) = R(A^T)^\perp \text{ and } N(A^T) = R(A)^\perp . \]

- If \(S \) is a subspace of \(\mathbb{R}^n \), then \(\dim S + \dim S^\perp = n \). Moreover, if \(\{ x_i \}_{i=1}^r \) is a basis for \(S \) and \(\{ x_j \}_{j=r+1}^n \) is a basis for \(S^\perp \), then \(\{ x_i \}_{i=1}^r \) is a basis for \(\mathbb{R}^n \).

- If \(U \) and \(V \) are subspaces of a vector space \(W \) and each \(w \in W \) can be written as a sum \(w = u + v \) uniquely, then we say that \(W \) is a direct sum of \(U \) and \(V \), written \(W = U \oplus V \).

- If \(S \) is a subspace of \(\mathbb{R}^n \), then \(\mathbb{R}^n = S \oplus S^\perp \).

- If \(S \) is a subspace of \(\mathbb{R}^n \), then \((S^\perp)^\perp = S \).

- If \(A \) is an \(m \times n \) real matrix and \(b \in \mathbb{R}^m \), then either \(Ax = b \) for some \(b \in \mathbb{R}^n \) or for some \(y \in \mathbb{R}^m \) we have \(A^Ty = 0 \) with \(y^Tb \neq 0 \).

Examples

233/1c

For the matrix \(A = \begin{bmatrix} 4 & -2 \\ 1 & 3 \\ 2 & 1 \\ 3 & 4 \end{bmatrix} \), determine a basis for each of the subspaces \(R(A^T), N(A), R(A), \) and \(N(A^T) \).

Solution

- The reduced row echelon form of \(A \) is
 \[U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} . \]

- Now \([1 \ 0] \) and \([0 \ 1] \) form a basis for the row space of \(U \) as well as \(A \) (since these matrices are row equivalent). Accordingly, the vectors \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \) form a basis for \(R(A^T) \), the column space of \(A^T \).

- If \(x \in N(A) \), it follows from the reduced row echelon form of \(A \) that \(x_1 = 0 \) and \(x_2 = 0 \). So \(\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0 \) forms a basis for \(N(A) = \{0\} \).

- Since the column vectors in the reduced row echelon form of \(A \) are linearly independent, the corresponding column vectors of \(A \),
 \[\begin{bmatrix} 4 \\ 1 \\ 2 \\ 3 \end{bmatrix} \text{ and } \begin{bmatrix} -2 \\ 3 \\ 1 \\ 4 \end{bmatrix} , \]
 form a basis for \(R(A) \).

- The row reduced echelon form of \(A^T \) is
 \[\begin{bmatrix} 1 & 0 & 5/3 & 5/3 \\ 0 & 1 & 4/7 & 11/7 \end{bmatrix} . \]

- The null space of \(A^T \) consists of vectors of the form
 \[\begin{bmatrix} -5 & 5 & -8 & 14s \\ -5 \tau - 22t & 8s - 22t & 14s & 14 \end{bmatrix} = s \begin{bmatrix} -5 \\ -8 \end{bmatrix} + t \begin{bmatrix} -5 \\ -22 \end{bmatrix} \]
 with \(s, t \in \mathbb{R} \). Thus \[\begin{bmatrix} -5 \\ -8 \\ 14 \end{bmatrix} \] and \[\begin{bmatrix} -5 \\ -22 \end{bmatrix} \] form a basis for \(N(A^T) \).
Is it possible for a matrix A to have $v = \begin{bmatrix} 3 & 1 & 2 \end{bmatrix}$ in its row space and $w = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}^T$ in its null space?

Solution

Assume it is possible. Since v is in the row space of A, we have $y = v^T \in R(A^T)$. Also, $w \in N(A) = R(A^T)^\perp$ implies that w is orthogonal to every vector in $R(A^T)$. Hence w is orthogonal to y; so $w^T y = 0$. However,

$$w^T y = 6 + 1 + 2 = 9,$$

a contradiction since $0 \neq 9$. Therefore the assumption is false and it is not possible for such a matrix to exist.

If A is an $m \times n$ matrix of rank r, what are the dimensions of $N(A)$ and $N(A^T)$? Explain.

Solution

- By the Rank-Nullity Theorem of Section 3.6, the rank of A plus the nullity of A (the dimension of the null space of A) equals n, the number of columns of A. Since the rank of A is r, the dimension of $N(A)$ is $n - r$.

- The rank of A is the dimension of the row space of A. This is also the dimension of the column space of A^T. So both of these equal r. Another application of the Rank-Nullity Theorem tells us that the dimension of $N(A^T)$ is $n - r$.

- So $N(A)$ and $N(A^T)$ have the same dimension; namely, $n - r$.

Let x and y be linearly independent vectors in \mathbb{R}^n and let $S = \text{Span}(x, y)$. We can use x and y to define a matrix A by setting $A = xy^T + yx^T$.

(a) Show that A is symmetric.

(b) Show that $N(A) = S^\perp$.

(c) Show that the rank of A is 2.

Thus $A^T = A$, whence A is symmetric.

(b) Let’s show that $S = R(A)$, the column space of A. Then we’ll conclude $N(A) = S^\perp$.

- First we show that $R(A) \subset S$. Let $c \in R(A)$. Then

$$Ac = (xy^T + yx^T)c = x(y^T c) + y(x^T c) = \alpha x + \beta y \in S.$$

Hence $R(A) \subset S$.

- Now we show that $S \subset R(A)$. Recall Corollary 2.5 on page 231 of this section and the fact that A is symmetric from part (a). Therefore,

- either there is a vector $v \in \mathbb{R}^n$ such that $Av = x$
- or there is a vector $w \in \mathbb{R}^n$ such that $Aw = 0$

and $y = w^T x \neq 0$ whence $c_2 = y^T = x^T w \neq 0$.

If the second case is true, then

$$0 = Aw = (xy^T + yx^T)w = x(y^T w) + y(x^T w) = c_1 x + c_2 y.$$

Since $c_2 \neq 0$, there exist scalars c_1 and c_2 not both zero such that $c_1 x + c_2 y = 0$, contradicting the fact that x and y are linearly independent from the statement of the problem. Hence the first case must be true, in which case x is in the column space of A.

Similarly, y is in the column space of A. Therefore any linear combination $\alpha x + \beta y$ is in $R(A)$, the column space of A, since $R(A)$ is a subspace of \mathbb{R}^n.

Accordingly, $S \subset R(A)$.

- Thus $S = R(A)$. By the Fundamental Subspaces Theorem and the fact that A is symmetric, we have

$$N(A) = R(A^T)^\perp = R(A)^\perp = S^\perp;$$

that is, $N(A) = S^\perp$.

(c) Since x and y are linearly independent, $\dim S = 2$. Thus $\dim S + \dim S^\perp = n$ and $N(A) = S^\perp$ imply $\dim N(A) = n - 2$. By the Rank-Nullity Theorem, the rank of A is $n - (n - 2) = 2$.

233/6