Choosing r objects from n objects, or, Putting r objects into n boxes

	Repetition	No repetition
Ordered/ Distinguishable	Sequences (Arrangements)	Permutations
	n^r	$P(n,r) = \frac{n!}{(n-r)!}$
	Table-service order	Choosing seats
	Maxwell–Boltzmann particles	
Unordered/ Indistinguishable	Combinations with repetition (Multisets)	$\begin{array}{c} \text{Combinations} \\ \text{(Subsets)} \end{array}$
	$\binom{n-1+r}{r} = \frac{(n-1+r)!}{r! (n-1)!}$	$\overline{C(n,r) = \binom{n}{r} = \frac{n!}{r! (n-r)!}}$
	Fast-food order	Setting the table
	Bose–Einstein particles	Fermi–Dirac particles

References:

- 1. M. Townsend, Discrete Mathematics: Applied Combinatorics and Graph Theory, Benjamin/Cummings, Menlo Park, 1987, Sec. 2.3.
- 2. Grimaldi, 4th ed., Secs. 1.5 and 1.7.

 \bigodot S. A. Fulling 2002