
Combinatorics of multivariable polynomials

Monomials, the ingredients of polynomials, are algebraic expressions such as x2y3z,
or, in generality, x1

n1x2
n2 · · ·xd

nd . They give rise to three related combinatorial questions
that are prototypes of problems that arise in many other contexts. One of these questions
gives rise to the multinomial coefficients, another to the formula for the number of ways
of distributing indistinguishable objects into boxes.

The simplest example

I) How many (homogeneous) quadratic monomials in 2 variables are there? (How many
terms can a quadratic polynomial have?) We list them:

x2, y2, xy : 3 items.

II) How many times does each monomial occur in (x + y)2? Note that each noncommu-
tative monomial occurs once:

x2, xy, yx, y2 : 4 items.

So we are asking how many noncommutative monomials (different orderings of the fac-
tors) reduce to the same commutative monomial. The answer is different for different
exponent structures:

x2, y2 : 1 each. xy : 2.

III) How many noncommutative monomials are there in all?

1 + 2 + 1 = 4 (sum of a row of Pascal’s triangle)

(In fact, we already saw this at the first step of answering Question II.)
Remark: The general polynomial of this type could be written

ax2 + bxy + cy2,

or
Ax2 + B1xy + B2yx + Cy2 = Ax2 + 2Bxy + Cy2

where B = 1
2
(B1 + B2) and we might as well take B1 = B2 = B. If we define x1 = x,

x2 = y, A11 = A, A12 = A21 = B, A22 = C, the polynomial becomes
2∑

i=1

2∑
j=1

Aijxixj .

(Linear algebra students know that these coefficients form a matrix,

(Aij) =
(

A B
B C

)
.)

Knowing the answer to question II allows us to replace the redundant sum over ordered
pairs of indices (i, j) by a sum over inequivalent terms:

A11x1
2 + 2A12x1x2 + A22x2

2.

Note that the index notation promises to ease the generalization to more variables or higher
degrees or both.
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Cubic (or higher) polynomials in 2 variables

I) How many monomials are there? Put 3 (or n) objects (the elementary linear factors)
into 2 boxes (labeled by the variables). We calculate all arrangements of n objects
and 2− 1 = 1 divider, the objects being indistinguishable:

(
n+2−1

n

)
= n + 1, which is

4 when n = 3. We can easily list them:

x3, x2y, xy2, y3.

II) How many noncommutative monomials reduce to xn1yn2 with n1 + n2 = n? The
answer is the binomial coefficient

n!
n1! n2!

=
n!

n1! (n− n1)!
=

(
n

n1

)
.

For n = 3:
(n1, n2) = (3, 0) : 3!

3! 0!
= 1 : x3

(n1, n2) = (2, 1) : 3!
2! 1!

= 3 : x2y, xyx, yx2

and two more cases symmetrical to these.
III) How many noncommutative monomials in all? The easy way is to note that each

factor chooses a variable, which is 2n choices. The hard way is to sum up the answer
to II:

n∑
j=0

(
n

j

)
= 2n (sum of a row of Pascal’s triangle).

For n = 3, this is 8 = 1 + 3 + 3 + 1. The answer to I is the number of terms in this
sum.

Quadratic monomials in 3 (or more) variables

I) How many monomials? Put 2 objects (factors) into 3 (or d) boxes (variables):
(
2+d−1

2

)
,

which is 6 when d = 3. Check by listing them:

x2, y2, z2, xy, xz, yz

II) How many cases with the structure x1
n1x2

n2 · · ·xd
nd with n1 + n2 + · · · + nd = 2?

The answer is the multinomial coefficient 2!
n1! n2! ···nd! . For d = 3 the only essentially

different cases are
(2, 0, 0) : 1
(1, 1, 0) : 2

(Each of them occurs 3 times.)
III) How many in all? Each factor chooses a variable, so the answer is d2. For d = 3, we

get 9 = 1+1+1+2+2+2, so this checks against II. In general, we get a generalized
“Pascal’s pyramid” identity,

n1+n2+···+nd=2∑
ni≥0

2!
n1! n2! · · · nd!

= d2

2



The general case: nth-degree polynomials in d variables

I) How many monomials? (
n + d− 1

n

)
.

II) How many cases with structure x1
n1x2

n2 · · ·xd
nd with n1 + n2 + · · ·+ nd = n?

n!
n1! n2! · · · nd!

.

III) How many noncommutative monomials in all?

dn =
n1+n2+···+nd=n∑

ni≥0

n!
n1! n2! · · · nd!

.

There is one term for each monomial in I. One way to get this equation is to evaluate
(x1 + · · ·+ xd)n with all xi = 1.
The general polynomial

∑
i1,i2,...in

Ai1i2...in
xi1xi2 · · ·xin

can be written as a sum over
all inequivalent index strings, weighted by the multinomial coefficients:

|n|=n∑
n

n!
n!

Anxn

where

n = (n1, . . . , nd), |n| =
d∑

i=1

ni , n! =
d∏

i=1

ni!, xn = x1
n1 · · ·xd

nd

Derivatives

How many 2nd-order partial derivatives in 2 variables are there?

∂2f

∂x2
,

∂2f

∂y2
,

∂2f

∂x ∂y
=

∂2f

∂y ∂x

It is easy to see that derivative operators will behave just like monomials; all the same
questions can be asked and answered in the same way. (Fourier and Laplace transforms
change derivatives into multiplications by new variables, so this had to work out the same
way for consistency.)
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