# Test B - Solutions 

Name: $\qquad$ Number: $\qquad$ (as on attendance sheets)

## Calculators may be used for simple arithmetic operations only!

1. (12 pts.) $A$ and $B$ are sets with $|B|=5$. There are exactly $32768=2^{15}$ relations from $A$ to $B$.
(a) What is $|A \times B|$ (the cardinality of the Cartesian product)?
$15=\log _{2}\left(2^{15}\right)$.
(b) What is $|A|$ ?
$\frac{|A \times B|}{|B|}=3$.
2. (16 pts.) One of these formulas is valid, the other is not. Prove the correct one and provide a counterexample for the other. Suggestion: For the counterexample, let $p(x, y)$ be an inequality in the universe of real numbers.
(a) $\forall x \exists y p(x, y) \rightarrow \exists y \forall x p(x, y)$

Not valid. Let $p(x, y)$ be $x<y$. Then the hypothesis is true, because, given $x, y$ could be $x+1$. However, the conclusion is false, because, whatever $y$ is, one can find an $x$ that is larger, say $x=y+1$.
(b) $\exists y \forall x p(x, y) \rightarrow \forall x \exists y p(x, y)$

Valid. Here is a formal deduction:
(1) $\exists y \forall x p(x, y) \quad$ (hypothesis)
(2) Let $c$ be such a $y: \forall x p(x, c)$ (existential specification)
(3) Let $d$ be arbitrary: $p(d, c)$ (universal specification)
(4) $\exists y p(d, y) \quad$ (existential generalization)
(5) Since $d$ was arbitrary, $\forall x \exists y p(x, y) \quad$ (universal generalization)
(6) Therefore, $\exists y \forall x p(x, y) \rightarrow \forall x \exists y p(x, y) \quad$ (because we've shown that (1) implies (5))

Remark: Let's see why this type of argument fails in case (a):
(1) $\forall x \exists y p(x, y) \quad$ (hypothesis)
(2) Let $d$ be arbitrary: $\exists y p(d, y)$ (universal specification)
(3) Let $c$ be such a $y: p(d, c)$ (existential specification)
(4) $\forall x p(x, c) \quad$ (universal generalization??) This is wrong, because in (3) $c$ depends on $x$ ! (See W. V. Quine, Methods of Logic, for instructions on how to use "flagged variables" to avoid this kind of error.)
3. (21 pts.) Recall that a pair of dice consists of two cubes, the sides of each of which are labeled by the numbers 1 through 6 . When the dice are thown, what is the probablity of obtaining each of these results? (Leave the answer as a fraction in lowest terms, not a decimal.)
(a) a pair (i.e, the same number on each die)

Note first that there are $6^{2}=36$ total possibilities, since the 6 possibilities for each die are independent of those for the other die. Of these, 6 outcomes are pairs, so the probability of a pair is $\frac{6}{36}=\frac{1}{6}$.
(b) a total of 4

There are 3 ways to get a $4: 1+3,2+2$, or $3+1$. So the probability is $\frac{3}{36}=\frac{1}{12}$.
(c) either a total of 4 , or a pair

All of the cases found in (a) and (b) count, but the case $2+2$ must not be counted twice. So the total number of good outcomes is $6+3-1=8$, for a probability of $\frac{8}{36}=\frac{2}{9}$. This is an instance of the principle

$$
|A \cup B|=|A|+|B|-|A \cap B| .
$$

4. (16 pts.) Establish the validity of the argument

$$
\{(p \rightarrow q) \wedge[(q \wedge r) \rightarrow s] \wedge r\} \Rightarrow(p \rightarrow s)
$$

(Write a formal deduction, not a truth table.)
(1) $\quad\{(p \rightarrow q) \wedge[(q \wedge r) \rightarrow s] \wedge r\} \quad$ (hypothesis)
(2) $\quad p \quad$ (hypothesis of the conclusion)
(3) $\quad(p \rightarrow q) \quad($ part of $(1))$
(4) $q$ (modus ponens, (2) and (3))
(5) $r \quad($ part of (1))
(6) $q \wedge r \quad$ (from (4) and (5))
(7) $\quad(q \wedge r) \rightarrow s \quad($ part of (1))
(8) $s$ (modus ponens, (6) and (7))
(9) $\quad p \rightarrow s \quad$ (because we have shown that (2) implies (8))

This shows that the hypothesis (1) logically implies the conclusion (9).
5. (15 pts.)
(a) Prove that $A \cup(A \cap B)=A \cap(A \cup B)$, or give a counterexample.

Method 1: Apply the distributive law for sets:

$$
A \cup(A \cap B)=(A \cup A) \cap(A \cup B)=A \cap(A \cup B)
$$

(Or apply the other distributive law from the other direction.)
Method 2: Appeal to the absorption law (part (b)) to show that both sides are equal to $A$.
Method 3: An "element proof":

$$
x \in A \cup(A \cap B) \Rightarrow(x \in A) \vee(x \in A \cap B)
$$

But $x \in A \cap B \rightarrow x \in A$. So in either case of " $\vee$ " we have $x \in A$. And if $x \in A$, then also $x \in A \cup B$. And therefore $x \in A \cap(A \cup B)$. So far we have shown that

$$
A \cup(A \cap B) \subseteq A \cap(A \cup B)
$$

Conversely, assume that $x \in A \cap(A \cup B)$. Then $x \in A$ and $x \in A \cup B$. But if $x \in A$, then certainly $x \in A \cup(A \cap B)$, and we have now shown that

$$
A \cap(A \cup B) \subseteq A \cup(A \cap B)
$$

So the two sets are equal.
Method 4: Start from the logical absorption law, $p \wedge(p \vee q) \longleftrightarrow p \vee(p \wedge q)$, or the logical distributive law, $p \wedge(q \vee r) \longleftrightarrow(p \wedge q) \vee(p \wedge r)$; let $p$ be $x \in A$, etc., and apply the definitions of the set-theory operations.
(b) Can you simplify either side of the equation to something else?

Yes, both sides simplify to $A$. This is called the "absorption law" for sets.
6. (20 pts.) Prove by induction that (for $n=0,1, \ldots$ )

$$
\frac{d^{n}}{d x^{n}}[f(x) g(x)]=\sum_{j=0}^{n}\binom{n}{j} f^{(j)}(x) g^{(n-j)}(x)
$$

(Here $f^{(j)}$ is the $j$ th derivative of $f$, etc.) Hints: Use $\binom{n-1}{j-1}+\binom{n-1}{j}=\binom{n}{j}$. Start by showing that the case $n=1$ is a well known fact of calculus.
The case $n=1$ is the product rule, $\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$. The case $n=0$ is trivial: $f(x) g(x)=f(x) g(x)$. We need to see what happens when we apply the product rule repeatedly. Let's write out the formula for the case $n-1$ :

$$
\frac{d^{n-1}}{d x^{n-1}}(f g)=\sum_{j=0}^{n-1}\binom{n-1}{j} f^{(j)} g^{(n-1-j)}
$$

Then

$$
\begin{aligned}
\frac{d^{n}}{d x^{n}}(f g) & =\frac{d}{d x}(f g)^{(n-1)} \\
& =\sum_{j=0}^{n-1}\binom{n-1}{j}\left[f^{(j+1)} g^{(n-1-j)}+f^{(j)} g^{(n-j)}\right] \\
& =\sum_{j=1}^{n}\binom{n-1}{j-1} f^{(j)} g^{(n-j)}+\sum_{j=0}^{n-1}\binom{n-1}{j} f^{(j)} g^{(n-j)} \\
& =\binom{n-1}{0} f^{(0)} g^{(n)}+\binom{n-1}{n-1} f^{(n)} g^{(0)}+\sum_{j=1}^{n-1}\left[\binom{n-1}{j-1}+\binom{n-1}{j}\right] f^{(j)} g^{(n-j)} \\
& =f^{(0)} g^{(n)}+f^{(n)} g^{(0)}+\sum_{j=1}^{n-1}\binom{n}{j} f^{(j)} g^{(n-j)} \\
& =\sum_{j=0}^{n}\binom{n}{j} f^{(j)} g^{(n-j)} .
\end{aligned}
$$

Remark: The hint is the identity on which Pascal's triangle is based. So the theorem says that repeated differentiation involves exactly the same combinatorics as the binomial theorem.

