
Math. 302 (Fulling) 8 March 2002

Test B – Solutions

Name: Number:
(as on attendance sheets)

Calculators may be used for simple arithmetic operations only!

1. (12 pts.) A and B are sets with |B| = 5 . There are exactly 32768 = 215 relations from
A to B .
(a) What is |A×B| (the cardinality of the Cartesian product)?

15 = log2(2
15) .

(b) What is |A| ?
|A×B|
|B| = 3 .

2. (16 pts.) One of these formulas is valid, the other is not. Prove the correct one and provide
a counterexample for the other. Suggestion: For the counterexample, let p(x, y) be an
inequality in the universe of real numbers.
(a) ∀x ∃y p(x, y) → ∃y ∀x p(x, y)

Not valid. Let p(x, y) be x < y . Then the hypothesis is true, because, given x , y could be
x + 1 . However, the conclusion is false, because, whatever y is, one can find an x that is larger,
say x = y + 1 .

(b) ∃y ∀x p(x, y) → ∀x ∃y p(x, y)
Valid. Here is a formal deduction:

(1) ∃y ∀x p(x, y) (hypothesis)
(2) Let c be such a y : ∀x p(x, c) (existential specification)
(3) Let d be arbitrary: p(d, c) (universal specification)
(4) ∃y p(d, y) (existential generalization)
(5) Since d was arbitrary, ∀x ∃y p(x, y) (universal generalization)
(6) Therefore, ∃y ∀x p(x, y) → ∀x ∃y p(x, y) (because we’ve shown that (1) implies (5))

Remark: Let’s see why this type of argument fails in case (a):

(1) ∀x ∃y p(x, y) (hypothesis)
(2) Let d be arbitrary: ∃y p(d, y) (universal specification)
(3) Let c be such a y : p(d, c) (existential specification)
(4) ∀x p(x, c) (universal generalization??) This is wrong, because in (3) c depends

on x ! (See W. V. Quine, Methods of Logic, for instructions on how to use “flagged
variables” to avoid this kind of error.)

3. (21 pts.) Recall that a pair of dice consists of two cubes, the sides of each of which are
labeled by the numbers 1 through 6 . When the dice are thown, what is the probablity
of obtaining each of these results? (Leave the answer as a fraction in lowest terms, not a
decimal.)
(a) a pair (i.e, the same number on each die)

Note first that there are 62 = 36 total possibilities, since the 6 possibilities for each die are inde-
pendent of those for the other die. Of these, 6 outcomes are pairs, so the probability of a pair is
6
36 = 1

6 .
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(b) a total of 4
There are 3 ways to get a 4 : 1 + 3 , 2 + 2 , or 3 + 1 . So the probability is 3

36 = 1
12 .

(c) either a total of 4 , or a pair
All of the cases found in (a) and (b) count, but the case 2 + 2 must not be counted twice. So the

total number of good outcomes is 6 + 3− 1 = 8 , for a probability of 8
36 = 2

9 . This is an instance of
the principle

|A ∪ B| = |A|+ |B| − |A ∩ B|.

4. (16 pts.) Establish the validity of the argument

{(p → q) ∧ [(q ∧ r) → s] ∧ r} ⇒ (p → s).

(Write a formal deduction, not a truth table.)
(1) {(p → q) ∧ [(q ∧ r) → s] ∧ r} (hypothesis)
(2) p (hypothesis of the conclusion)
(3) (p → q) (part of (1))
(4) q (modus ponens, (2) and (3))
(5) r (part of (1))
(6) q ∧ r (from (4) and (5))
(7) (q ∧ r) → s (part of (1))
(8) s (modus ponens, (6) and (7))
(9) p → s (because we have shown that (2) implies (8))

This shows that the hypothesis (1) logically implies the conclusion (9).

5. (15 pts.)

(a) Prove that A ∪ (A ∩B) = A ∩ (A ∪ B) , or give a counterexample.
Method 1: Apply the distributive law for sets:

A ∪ (A ∩ B) = (A ∪ A) ∩ (A ∪ B) = A ∩ (A ∪ B).

(Or apply the other distributive law from the other direction.)

Method 2: Appeal to the absorption law (part (b)) to show that both sides are equal to A .

Method 3: An “element proof”:

x ∈ A ∪ (A ∩ B) ⇒ (x ∈ A) ∨ (x ∈ A ∩ B).

But x ∈ A ∩ B → x ∈ A . So in either case of “ ∨ ” we have x ∈ A . And if x ∈ A , then also
x ∈ A ∪ B . And therefore x ∈ A ∩ (A ∪ B) . So far we have shown that

A ∪ (A ∩ B) ⊆ A ∩ (A ∪ B).

Conversely, assume that x ∈ A ∩ (A ∪ B) . Then x ∈ A and x ∈ A ∪ B . But if x ∈ A , then
certainly x ∈ A ∪ (A ∩ B) , and we have now shown that

A ∩ (A ∪ B) ⊆ A ∪ (A ∩ B).

So the two sets are equal.

Method 4: Start from the logical absorption law, p∧(p∨q) ←→ p∨(p∧q) , or the logical distributive
law, p∧(q∨r) ←→ (p∧q)∨(p∧r) ; let p be x ∈ A , etc., and apply the definitions of the set-theory
operations.



302B-S02 Page 3

(b) Can you simplify either side of the equation to something else?
Yes, both sides simplify to A . This is called the “absorption law” for sets.

6. (20 pts.) Prove by induction that (for n = 0 , 1 , . . . )

dn

dxn [f(x)g(x)] =
n∑

j=0

(
n

j

)
f (j)(x)g(n−j)(x).

(Here f (j) is the j th derivative of f , etc.) Hints: Use
(n−1
j−1

)
+

(n−1
j

)
=

(n
j

)
. Start by

showing that the case n = 1 is a well known fact of calculus.
The case n = 1 is the product rule, d

dx [f(x)g(x)] = f(x)g′(x)+f ′(x)g(x) . The case n = 0 is trivial:
f(x)g(x) = f(x)g(x) . We need to see what happens when we apply the product rule repeatedly.
Let’s write out the formula for the case n− 1 :

dn−1

dxn−1
(fg) =

n−1∑
j=0

(
n− 1

j

)
f (j)g(n−1−j).

Then

dn

dxn
(fg) =

d

dx
(fg)(n−1)

=

n−1∑
j=0

(
n− 1

j

)[
f (j+1)g(n−1−j) + f (j)g(n−j)

]

=

n∑
j=1

(
n− 1

j − 1

)
f (j)g(n−j) +

n−1∑
j=0

(
n− 1

j

)
f (j)g(n−j)

=

(
n− 1

0

)
f (0)g(n) +

(
n− 1

n− 1

)
f (n)g(0) +

n−1∑
j=1

[(
n− 1

j − 1

)
+

(
n− 1

j

)]
f (j)g(n−j)

= f (0)g(n) + f (n)g(0) +

n−1∑
j=1

(
n

j

)
f (j)g(n−j)

=

n∑
j=0

(
n

j

)
f (j)g(n−j).

Remark: The hint is the identity on which Pascal’s triangle is based. So the theorem says that
repeated differentiation involves exactly the same combinatorics as the binomial theorem.


