Math. 302 (Fulling) 8 March 2002

Test B — Solutions

Name: Number:
(as on attendance sheets)

Calculators may be used for simple arithmetic operations only!

1. (12pts.) A and B are sets with |B| = 5. There are exactly 32768 = 21° relations from
A to B.

(a) What is |A x B| (the cardinality of the Cartesian product)?
15 = log, (2'°) .

(b) What is |A|?
|A x B|
=3.
| B
2. (16 pts.) One of these formulas is valid, the other is not. Prove the correct one and provide
a counterexample for the other. Suggestion: For the counterexample, let p(x,y) be an
inequality in the universe of real numbers.

(a)  VzIyp(r,y) — JyVep(z,y)
Not valid. Let p(xz,y) be z < y. Then the hypothesis is true, because, given z, y could be
x + 1. However, the conclusion is false, because, whatever y is, one can find an z that is larger,
say =9y +1.

(b)  JyVap(z,y) — YzIyp(r,y)
Valid. Here is a formal deduction:

(1)  JyVep(x,y) (hypothesis)
(2) Let ¢ besuch a y: Vxp(z,c) (existential specification)
(3) Let d be arbitrary: p(d,c) (universal specification)
(4)  Jyp(d,y) (existential generalization)
(5) Since d was arbitrary, Vz 3y p(x,y)  (universal generalization)
(6)  Therefore, JyVrp(r,y) — VerIyp(x,y) (because we’'ve shown that (1) implies (5))

Remark: Let’s see why this type of argument fails in case (a):

(1)  Vz3yp(z,y) (hypothesis)

(2) Let d be arbitrary: Jyp(d,y)  (universal specification)

(3) Let ¢ besucha y: p(d,c) (existential specification)

(4)  Vap(r,c) (universal generalization??) This is wrong, because in (3) ¢ depends
on z! (See W. V. Quine, Methods of Logic, for instructions on how to use “flagged
variables” to avoid this kind of error.)

3. (21 pts.) Recall that a pair of dice consists of two cubes, the sides of each of which are
labeled by the numbers 1 through 6. When the dice are thown, what is the probablity
of obtaining each of these results? (Leave the answer as a fraction in lowest terms, not a
decimal.)

(a) a pair (i.e, the same number on each die)

Note first that there are 6% = 36 total possibilities, since the 6 possibilities for each die are inde-
p6ende{1t of those for the other die. Of these, 6 outcomes are pairs, so the probability of a pair is

36~ 6 -
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(b) a total of 4
There are 3 waystogeta 4: 14+3, 242, or 34 1. So the probability is % = 1—12

(c) either a total of 4, or a pair
All of the cases found in (a) and (b) count, but the case 2+ 2 must not be counted twice. So the

total number of good outcomes is 6+ 3 — 1 = 8, for a probability of % = % . This is an instance of

the principle
|AUB|=|A|+ |B|—-|AN B].

4. (16 pts.) Establish the validity of the argument

{0 = Orllghr) = s[Ary = (p — ).

(Write a formal deduction, not a truth table.)

(1) {(p = 9 A[(ghnr) — s]Ar}  (hypothesis)
(2) p  (hypothesis of the conclusion)

(3) (@ — g (partof (1))
(4) g (modus ponens, (2) and (3))
(5) 7 (part of (1))
(6) gAr (from (4) and (5))
(1) (gAr) — s (part of (1))
(8) s  (modus ponens, (6) and (7))
(99 p — s (because we have shown that (2) implies (8))
This shows that the hypothesis (1) logically implies the conclusion (9).

d. (15 pts.)
(a) Prove that AU(ANB)=AN(AUB), or give a counterexample.
Method 1: Apply the distributive law for sets:

AUANB)=(AUA)N(AUB)=AN(AUB).

(Or apply the other distributive law from the other direction.)
Method 2: Appeal to the absorption law (part (b)) to show that both sides are equal to A .
Method 3: An “element proof”:

r€AU(ANB) = (r€A)V(re ANB).

But € ANB — x € A. So in either case of “V” we have x € A. And if x € A, then also
x € AU B . And therefore x € AN (AU B). So far we have shown that

AU(ANB)CAN(AUB).

Conversely, assume that € AN (AUB). Then x € A and € AUB. But if x € A, then
certainly x € AU (AN B), and we have now shown that

AN(AUB) C AU(ANB).

So the two sets are equal.

Method 4: Start from the logical absorption law, pA(pVq) «— pV(pAq), or the logical distributive
law, pA(qVr) <« (pAq)V(pAr);let p be © € A, etc., and apply the definitions of the set-theory
operations.
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(b) Can you simplify either side of the equation to something else?

Yes, both sides simplify to A . This is called the “absorption law” for sets.
6. (20 pts.) Prove by induction that (for n =0, 1, ...)

@)@ = > (7).

(Here f(j) is the jth derivative of f, etc.) Hints: Use (?:11) + (nj—l) = (?) . Start by
showing that the case n =1 is a well known fact of calculus.

The case n =1 is the product rule, %[f(:z:)g(ac)] = f(z)g' (x)+ f'(x)g(x) . The case n =0 is trivial:
fx)g(x) = f(x)g(x). We need to see what happens when we apply the product rule repeatedly.
Let’s write out the formula for the case n —1:

L (o) - Z( )fw (n—1-j)
Then
(fg)"

(n - 1) [f(jJrl)g(nflfj) +f(j)g(n,j)]
J

(fg)

da:”

f%l@
!

0

Z(@ )fw (n- J)+Z( )fm (n—3)
=1\’
(") @) (7L g <o>+z n—1 R N OB
0 n — 7 —1 7
n—1
_ 0 ) 4 ) (0) ( )fm (n—)

=1
_Z( )fm (n—3)

Remark: The hint is the identity on which Pascal’s triangle is based. So the theorem says that
repeated differentiation involves exactly the same combinatorics as the binomial theorem.
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