Test B - Solutions

Calculators may be used for simple arithmetic operations only!

1. (10 pts.) Let A and B be sets, and f a function from A into $B(f: A \rightarrow B)$.
(a) Explain what it means for f to be "one-to-one".
f does not map two different elements of A into the same element of B. (There are many equivalent ways of saying this. However, beware of formulations that interchange the roles of A and B; they merely say that f is a function!)
(b) If $|A|=3$ and $|B|=10$, how many one-to-one functions $f: A \rightarrow B$ are there? ($|A|=$ number of elements in A, etc.)
$10 \cdot 9 \cdot 8=720$.
2. (20 pts.) Find a formula (or set of formulas) for the nth derivative of $f(x)=\sin (\pi x)$, and prove it by mathematical induction ($n \in \mathbf{N}$).
Let's write out the first few cases:

$$
\begin{aligned}
f^{(0)}(x) & \equiv f(x)=\sin (\pi x), \\
f^{(1)}(x) & \equiv f^{\prime}(x)=\pi \cos (\pi x), \\
f^{(2)}(x) & =-\pi^{2} \sin (\pi x), \\
f^{(3)}(x) & =-\pi^{3} \cos (\pi x), \\
f^{(4)}(x) & =\pi^{4} \sin (\pi x), \\
f^{(5)}(x) & =\pi^{5} \cos (\pi x), \quad \ldots
\end{aligned}
$$

It is clear that the pattern will repeat. Thus for n even we will get $\pi^{n} \sin (\pi x)$ times a sign, and for n odd, $\pi^{n} \cos (\pi x)$ times a sign. After some experimentation and checking, if necessary, we get a way to represent the sign, and we write the formula

$$
f^{(n)}(x)= \begin{cases}(-1)^{n / 2} \pi^{n} \sin (\pi x) & \text { if } n \text { is even } \\ (-1)^{(n-1) / 2} \pi^{n} \cos (\pi x) & \text { if } n \text { is odd }\end{cases}
$$

Alternative formula (found on two student papers):

$$
f^{(n)}(x)=\pi^{n} \sin \left(\pi x+\frac{n \pi}{2}\right) .
$$

Now to the proof:
Base: We already took care of that in our exploratory calculations.
Induction: If n is even, we assume the formula for the preceding odd number,

$$
f^{(n-1)}(x)=(-1)^{(n-2) / 2} \pi^{n-1} \cos (\pi x)
$$

Differentiating gives

$$
f^{(n)}(x)=(-1)^{n / 2} \pi^{n} \sin (\pi x)
$$

as required. Similarly, differentiating the even formula yields the odd formula. (To prove the alternative formula, use $\cos z=\sin (z+\pi / 2)$.)
3. (15 pts.) For each function, find the simplest function in the same Θ class.
(a) $\left(2 n^{2}+3 n-5\right)(3 \sqrt{n}+n)$
n^{3}. (Find the fastest growing product and discard the numerical coefficient.)
(b) $n^{3} \ln n+n e^{n}-5 n^{2} e^{n / 2}$
$n e^{n}$. (It will beat $n^{p} e^{n / 2}$ for any p. If in doubt, take the limit:

$$
\left.\frac{n e^{n}}{n^{2} e^{n / 2}}=\frac{e^{n / 2}}{n} \rightarrow \infty .\right)
$$

(c) $10 n$! $-\left\lfloor n^{2}\right\rfloor$
$n!$. (There is a complicated way to write $\Theta(n!)$ in terms of exponentials and powers (Stirling's formula), but n ! appears so often that we usually accept it as a "simple" function in itself. Note that $n!$ is $O\left(n^{n}\right)$ but not $\Theta\left(n^{n}\right) ; n^{n}$ grows faster!)
4. (20 pts.) The automatic teller machine of the Last National Bank of Old Dime Box uses three-character passwords consisting of letters and digits. (There is no distinction between upper- and lower-case letters.) A password must contain at least one digit. The first character must be a letter. How many possible passwords are there?
There are 26 choices for the initial letter. For the second and third characters there are these cases:

$$
\begin{array}{ll}
10 \cdot 10 & \text { digit + digit, } \\
10 \cdot 26 & \text { digit + letter, } \\
26 \cdot 10 & \text { letter + digit, }
\end{array}
$$

which add up to 620 . Alternatively, we can calculate the total number of pairs and subtract the pairs with no digits:

$$
36^{2}-26^{2}=1296-676=620
$$

In any event, the answer is

$$
26 \cdot 620=16,120 .
$$

5. (15 pts.) Use l'Hôpital's rule and mathematical induction to show that $(\ln x)^{n} \in O(x)$ for all $n \in \mathbf{Z}^{+}$.
Base: $\ln x \in O(x)$, so it's true for $n=1$. (In fact, it's also true for $n=0$.)
Induction: Use the limit theorem to compare $(\ln x)^{n}$ with x :

$$
\lim _{x \rightarrow \infty} \frac{(\ln x)^{n}}{x}=\lim _{x \rightarrow \infty} \frac{n(\ln x)^{n-1} \frac{1}{x}}{1}=n \lim _{x \rightarrow \infty} \frac{(\ln x)^{n-1}}{x} .
$$

So if the limit is 0 for $n-1$, then it is also 0 for n. (The limit in the base case is

$$
\left.\lim _{x \rightarrow \infty} \frac{(\ln x)^{0}}{x}=0 .\right)
$$

6. (20 pts.) Open-book. Exercise 44, p. 272. (Note that the definitions of "leaves" and "internal vertices" appear above the exercise.)
We need to show that $l(T)=i(T)+1$ for every full binary tree, where l is the number of leaves and i the number of internal vertices. Binary trees are defined in Definition 6 and illustrated in Figure 4. (Note that "full" does not mean "balanced"; thus the number of leaves is not necessarily of the form 2^{n}.)

Base step: The tree consisting of a single vertex has $l=1$ and $i=0$, so it satisfies the equation.
Induction: Assume $l\left(T_{1}\right)=i\left(T_{1}\right)+1$ and $l\left(T_{2}\right)=i\left(T_{2}\right)+1$ and study the tree $T_{1} \cdot T_{2}$. Its leaves are just the union of the leaves of the two parts: $l\left(T_{1} \cdot T_{2}\right)=l\left(T_{1}\right)+l\left(T_{2}\right)$. Its internal vertices are those of the parts, plus the root vertex added at the top (see Def. 6), so $i\left(T_{1} \cdot T_{2}\right)=i\left(T_{1}\right)+i\left(T_{2}\right)+1$. Thus (by the inductive assumption) $l\left(T_{1} \cdot T_{2}\right)=i\left(T_{1}\right)+i\left(T_{2}\right)+2=i\left(T_{1} \cdot T_{2}\right)+1$.

Alternative induction (found on several student papers): From Fig. 4 it is obvious that big trees are built up from smaller trees by attaching two new leaves to an old leaf, which thereby becomes an internal vertex - no longer a leaf. Therefore, at each such step the number of leaves grows by $2-1=1$ and the number of internal vertices grows by 1 . Thus the relation $l=i+1$ is preserved.

