Test B – Solutions

Calculators may be used for simple arithmetic operations only!

- 1. (10 pts.) Let A and B be sets, and f a function from A into B $(f: A \rightarrow B)$.
 - (a) Explain what it means for f to be "one-to-one".

f does not map two different elements of A into the same element of B. (There are many equivalent ways of saying this. However, beware of formulations that interchange the roles of A and B; they merely say that f is a function!)

(b) If |A| = 3 and |B| = 10, how many one-to-one functions $f: A \to B$ are there? (|A| = number of elements in A, etc.)

 $10 \cdot 9 \cdot 8 = 720.$

2. (20 pts.) Find a formula (or set of formulas) for the nth derivative of $f(x) = \sin(\pi x)$, and prove it by mathematical induction ($n \in \mathbb{N}$).

Let's write out the first few cases:

$$f^{(0)}(x) \equiv f(x) = \sin(\pi x),$$

$$f^{(1)}(x) \equiv f'(x) = \pi \cos(\pi x),$$

$$f^{(2)}(x) = -\pi^2 \sin(\pi x),$$

$$f^{(3)}(x) = -\pi^3 \cos(\pi x),$$

$$f^{(4)}(x) = \pi^4 \sin(\pi x),$$

$$f^{(5)}(x) = \pi^5 \cos(\pi x), \dots$$

It is clear that the pattern will repeat. Thus for n even we will get $\pi^n \sin(\pi x)$ times a sign, and for n odd, $\pi^n \cos(\pi x)$ times a sign. After some experimentation and checking, if necessary, we get a way to represent the sign, and we write the formula

$$f^{(n)}(x) = \begin{cases} (-1)^{n/2} \pi^n \sin(\pi x) & \text{if } n \text{ is even,} \\ (-1)^{(n-1)/2} \pi^n \cos(\pi x) & \text{if } n \text{ is odd.} \end{cases}$$

Alternative formula (found on two student papers):

$$f^{(n)}(x) = \pi^n \sin\left(\pi x + \frac{n\pi}{2}\right).$$

Now to the proof:

Base: We already took care of that in our exploratory calculations.

Induction: If n is even, we assume the formula for the preceding odd number,

$$f^{(n-1)}(x) = (-1)^{(n-2)/2} \pi^{n-1} \cos(\pi x).$$

Differentiating gives

$$f^{(n)}(x) = (-1)^{n/2} \pi^n \sin(\pi x)$$

as required. Similarly, differentiating the even formula yields the odd formula. (To prove the alternative formula, use $\cos z = \sin(z + \pi/2)$.)

302B-F04

Page 2

- 3. (15 pts.) For each function, find the simplest function in the same Θ class.
 - (a) $(2n^2 + 3n 5)(3\sqrt{n} + n)$
- n^3 . (Find the fastest growing product and discard the numerical coefficient.)
 - (b) $n^3 \ln n + ne^n 5n^2 e^{n/2}$

 ne^n . (It will beat $n^p e^{n/2}$ for any p. If in doubt, take the limit:

$$\frac{ne^n}{n^2e^{n/2}} = \frac{e^{n/2}}{n} \to \infty .)$$

- (c) $10n! |n^2|$
- n!. (There is a complicated way to write $\Theta(n!)$ in terms of exponentials and powers (Stirling's formula), but n! appears so often that we usually accept it as a "simple" function in itself. Note that n! is $O(n^n)$ but not $\Theta(n^n)$; n^n grows faster!)
- 4. (20 pts.) The automatic teller machine of the Last National Bank of Old Dime Box uses three-character passwords consisting of letters and digits. (There is no distinction between upper- and lower-case letters.) A password must contain at least one digit. The first character must be a letter. How many possible passwords are there?

There are 26 choices for the initial letter. For the second and third characters there are these cases:

- $10 \cdot 10$ digit + digit,
- $10 \cdot 26$ digit + letter,
- $26 \cdot 10$ letter + digit,

which add up to 620. Alternatively, we can calculate the total number of pairs and subtract the pairs with no digits:

$$36^2 - 26^2 = 1296 - 676 = 620.$$

In any event, the answer is

$$26 \cdot 620 = 16,120.$$

5. (15 pts.) Use l'Hôpital's rule and mathematical induction to show that $(\ln x)^n \in O(x)$ for all $n \in \mathbb{Z}^+$.

Base: $\ln x \in O(x)$, so it's true for n = 1. (In fact, it's also true for n = 0.) Induction: Use the limit theorem to compare $(\ln x)^n$ with x:

$$\lim_{x\to\infty}\frac{(\ln x)^n}{x}=\lim_{x\to\infty}\frac{n(\ln x)^{n-1}\frac{1}{x}}{1}=n\lim_{x\to\infty}\frac{(\ln x)^{n-1}}{x}\,.$$

So if the limit is 0 for n-1, then it is also 0 for n. (The limit in the base case is

$$\lim_{x \to \infty} \frac{(\ln x)^0}{x} = 0.$$

302B-F04 Page 3

6. (20 pts.) **Open-book.** Exercise 44, p. 272. (Note that the definitions of "leaves" and "internal vertices" appear above the exercise.)

We need to show that l(T) = i(T) + 1 for every full binary tree, where l is the number of leaves and i the number of internal vertices. Binary trees are defined in Definition 6 and illustrated in Figure 4. (Note that "full" does not mean "balanced"; thus the number of leaves is not necessarily of the form 2^n .)

Base step: The tree consisting of a single vertex has l=1 and i=0, so it satisfies the equation. Induction: Assume $l(T_1)=i(T_1)+1$ and $l(T_2)=i(T_2)+1$ and study the tree $T_1\cdot T_2$. Its leaves are just the union of the leaves of the two parts: $l(T_1\cdot T_2)=l(T_1)+l(T_2)$. Its internal vertices are those of the parts, plus the root vertex added at the top (see Def. 6), so $i(T_1\cdot T_2)=i(T_1)+i(T_2)+1$. Thus (by the inductive assumption) $l(T_1\cdot T_2)=i(T_1)+i(T_2)+2=i(T_1\cdot T_2)+1$.

Alternative induction (found on several student papers): From Fig. 4 it is obvious that big trees are built up from smaller trees by attaching two new leaves to an old leaf, which thereby becomes an internal vertex — no longer a leaf. Therefore, at each such step the number of leaves grows by 2-1=1 and the number of internal vertices grows by 1. Thus the relation l=i+1 is preserved.