Test C - Solutions

Calculators may be used for simple arithmetic operations only!

1. (36 pts.)
(a) Count the distinct arrangements (permutations) of the letters in AARDVARK. (All letters are used, order matters, but different letters A (for instance) are indistinguishable.)
Count the permutations of all the letters, then divide to correct for the overcounting of those that are indistinguishable:

$$
\frac{8!}{3!2!1!1!1!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{6 \cdot 2}=56 \cdot 60=3360 .
$$

(b) How many such arrangements have no consecutive As?

Count the arrangements of the other letters, remembering to divide by 2 ! to avoid overcounting the Rs. These 5 letters leave 6 possible positions for the As, of which we must choose 3 . So the total number of possibilities is

$$
\frac{5!}{2!} \frac{6!}{3!3!}=(5 \cdot 4 \cdot 3)(5 \cdot 4)=1200
$$

Alternative method: Count the arrangements with adjacent As and subtract.

$$
\begin{aligned}
\text { All As together: } & \frac{6!}{2!}=360 \\
\text { As grouped } 2 \text { and } 1: & \frac{7!}{2!}=7 \cdot 360 \\
3360-8 \cdot 360 & =480
\end{aligned}
$$

Oops! We should not have subtracted the cases where the pair of A s ends up adjacent to the single A ; that gave us two more copies of the 360 . Adding back 720 to 480 gives 1200 , as expected.
(c) How many ways are there to choose 4 letters from AARDVARK so that no letter appears more than twice? (Order doesn't matter.)
The generating function for the possible number of As is $1+x+x^{2}$, and the same is true for R . For each of the other 3 letters the generating function is $1+x$. The complete generating function is

$$
\begin{aligned}
\left(1+x+x^{2}\right)^{2}(1+x)^{3} & =\left(1+2 x+x^{2}+2 x^{2}+2 x^{3}+x^{4}\right)\left(1+3 x+3 x^{2}+x^{3}\right) \\
& =\text { irrelevant terms }+x^{4}(2 \cdot 1+3 \cdot 3+2 \cdot 3+1 \cdot 1) \\
& =\cdots+18 x^{4} .
\end{aligned}
$$

So the answer is 18 .
Alternative method: In poker terminology, there are

$$
\begin{aligned}
\text { hands with two pairs: } & 1 \\
\text { hands with one pair: } & 2 \cdot\binom{4}{2}=12 \\
\text { hands with no pair: } & \binom{5}{4}=5
\end{aligned}
$$

Adding gives 18.
2. (25 pts.) Solve $a_{n}-4 a_{n-2}=\frac{1}{9} n 3^{n}, \quad a_{0}=0, \quad a_{1}=0$.

First solve the homogeneous relation, $a_{n}-4 a_{n-2}=0$. Try $a_{n}=r^{n}$, getting $r^{n}-4 r^{n-2}=0$, or $r^{2}=4$. Thus $r= \pm 2$, and the general homogeneous solution is

$$
A 2^{n}+B(-2)^{n}
$$

Now find a particular solution of the nonhomogeneous relation in the form $a_{n}=(C n+D) 3^{n}$. We get

$$
\begin{aligned}
\frac{1}{9} n 3^{n} & =(C n+D) 3^{n}-4[C(n-2)+D] 3^{n-2} \\
& =n 3^{n}\left[C-\frac{4}{9} C\right]+3^{n}\left[D-\frac{4}{9}(-2 C+D)\right] \\
& =\frac{5}{9} C n 3^{n}+\left(\frac{8}{9} C+\frac{5}{9} D\right) 3^{n} .
\end{aligned}
$$

Therefore,

$$
5 C=1, \quad 8 C+5 D=0
$$

so

$$
C=\frac{1}{5}, \quad D=-\frac{8 C}{5}=-\frac{8}{25} .
$$

Thus the general solution is

$$
a_{n}=\frac{1}{5} n 3^{n}-\frac{8}{25} 3^{n}+A 2^{n}+B(-2)^{n} .
$$

The initial conditions give

$$
0=-\frac{8}{25}+A+B, \quad 0=\frac{3}{5}-\frac{24}{25}+2 A-2 B .
$$

or

$$
A+B=\frac{8}{25}, \quad A-B=\frac{9}{50} .
$$

Therefore,

$$
\begin{aligned}
& A=\frac{1}{2}\left(\frac{8}{25}+\frac{9}{50}\right)=\frac{25}{100}=\frac{1}{4} \\
& B=\frac{1}{2}\left(\frac{8}{25}-\frac{9}{50}\right)=\frac{7}{100} .
\end{aligned}
$$

Finally, after one final simplification,

$$
a_{n}=\frac{1}{5} n 3^{n}-\frac{8}{25} 3^{n}+2^{n-2}+\frac{7}{25}(-2)^{n-2} .
$$

3. (10 pts.) Solve $a_{n+1}=(n+3) a_{n}, \quad a_{0}=1$.

Let's write out the first few terms.

$$
a_{0}=1, \quad a_{1}=3, \quad a_{2}=4 \cdot 3, \ldots
$$

It is clear that

$$
a_{n}=\frac{(n+2)!}{2} .
$$

4. (14 pts.) Estimate the growth of $f(n)$ if

$$
f(n)=24 f(n / 5)+100 n^{2} \ln n
$$

(Use of the "log" button on your calculator is permitted but shouldn't really be necessary.) Explain your reasoning clearly.
$\log _{5} 24$ is slightly less than 2 , because $\log _{5} 25$ would be 2 . Therefore, it seems that Case 3 should apply. However, we need to check the extra condition in that case.

$$
\begin{aligned}
24 \cdot 100\left(\frac{n}{5}\right)^{2} \ln \left(\frac{n}{5}\right) & =\frac{24}{25} \cdot 100 n^{2}(\ln n-\ln 5) \\
& <\frac{24}{25} \cdot 100 n^{2} \ln n
\end{aligned}
$$

Since $c=24 / 25<1$, the condition is satisfied. Conclusion:

$$
f(n) \in \Theta\left(n^{2} \ln n\right)
$$

(Since the factor 100 does not affect the truth of a Θ statement, we can drop it.)
5. (15 pts.) By the method of generating functions, count the solutions of

$$
\begin{aligned}
& x+y+z=12 \quad \text { with } \quad 0 \leq x \leq 3, \quad 5 \leq y \leq 6, \quad 2 \leq z \leq 6 . \\
& \begin{aligned}
\left(1+x+x^{2}+x^{3}\right) & \left(x^{5}+x^{6}\right)\left(x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \\
& =\left(x^{5}+2 x^{6}+2 x^{7}+2 x^{8}+x^{9}\right)\left(x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \\
& =\text { irrelevant terms }+x^{12}(2 \cdot 1+2 \cdot 1+2 \cdot 1+1 \cdot 1) \\
& =\cdots+7 x^{12} .
\end{aligned}
\end{aligned}
$$

So the answer is 7 .
Remark: Looking back at where the x^{12} terms came from, we can actually list the solutions:

x	y	z
0	6	6
1	5	6
1	6	5
2	5	5
2	6	4
3	5	4
3	6	3

