Final Examination - Solutions

Name:

Calculators may be used for simple arithmetic operations only!

1. (18 pts.) Which of these formulas define inner products on \mathbf{R}^{3} ? Explain what's wrong with those that don't. $\left(\mathbf{r}_{1}=\left(x_{1}, y_{1}, z_{1}\right)\right.$, etc. $)$
(a) $\left\langle\mathbf{r}_{1}, \mathbf{r}_{2}\right\rangle=x_{1}^{2} x_{2}^{2}+y_{1}^{2} y_{2}^{2}+z_{1}^{2} z_{2}^{2}$

NO - not bilinear.
(b) $\left\langle\mathbf{r}_{1}, \mathbf{r}_{2}\right\rangle=x_{1} x_{2}-y_{1} y_{2}+z_{1} z_{2}$

NO - not positive definite.
(c) $\left\langle\mathbf{r}_{1}, \mathbf{r}_{2}\right\rangle=x_{1} x_{2}+2 y_{1} y_{2}+3 z_{1} z_{2}$

YES (bilinear, symmetric, positive definite).
2. (15 pts.) Three variables are constrained by the equations

$$
x^{2}+y^{2}+z^{2}=26 \quad \text { and } \quad x y z=-12
$$

Find $\frac{\partial x}{\partial z}$ and $\frac{\partial y}{\partial z}$ at the point $(x, y, z)=(1,-3,4)$.
Differentiate both equations with respect to z :

$$
2 x \frac{\partial x}{\partial z}+2 y \frac{\partial y}{\partial z}+2 z=0 \quad y z \frac{\partial x}{\partial z}+x z \frac{\partial y}{\partial z}+x y=0
$$

Plug in the numbers:

$$
2 \frac{\partial x}{\partial z}-6 \frac{\partial y}{\partial z}=-8, \quad-12 \frac{\partial x}{\partial z}+4 \frac{\partial y}{\partial z}=3
$$

Solve by either Gauss-Jordan or Cramer method:

$$
\frac{\partial x}{\partial z}=\frac{7}{32}, \quad \frac{\partial y}{\partial z}=\frac{45}{32} .
$$

3. (35 pts.) Let $M=\left(\begin{array}{ccc}4 & 0 & 0 \\ 0 & 2 & \sqrt{2} \\ 0 & \sqrt{2} & 3\end{array}\right)$.
(a) Find all eigenvalues and eigenvectors of M.

The characteristic (or secular) equation is
$0=\left|\begin{array}{ccc}4-\lambda & 0 & 0 \\ 0 & 2-\lambda & \sqrt{2} \\ 0 & \sqrt{2} & 3-\lambda\end{array}\right|=(4-\lambda)[(\lambda-2)(\lambda-3)-2]=(4-\lambda)\left(\lambda^{2}-5 \lambda+4\right)=(\lambda-4)^{2}(\lambda-1)$

- from which it is clear that the eigenvalues are

$$
\lambda=4 \quad(\text { a double root }), \quad \lambda=1
$$

Eigenvectors with $\lambda=4$: Solve the homogeneous system with matrix

$$
\begin{aligned}
\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 & \sqrt{2} \\
0 & \sqrt{2} & -1
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
0 & 1 & -\frac{1}{\sqrt{2}} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right): \\
x \text { is arbitrary }, \quad y & =\frac{z}{\sqrt{2}}, \quad z \text { is arbitrary . }
\end{aligned}
$$

Eigenvectors with $\lambda=1$: Solve the homogeneous system with matrix

$$
\begin{gathered}
\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 1 & \sqrt{2} \\
0 & \sqrt{2} & 2
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \sqrt{2} \\
0 & 0 & 0
\end{array}\right): \\
x=0, \quad y=-\sqrt{2} z, \quad z \text { is arbitrary . }
\end{gathered}
$$

(b) A function $f(x, y, z)$ satisfies $f(0,0,0)=10, \nabla f(0,0,0)=0$, and

$$
\left\{\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}\right\}=M
$$

Is $(0,0,0)$ a maximum, minimum, or saddle point of f ?
minimum, because all eigenvalues are positive.
(c) Find an orthogonal matrix U that diagonalizes M (that is, $M=U D U^{-1}$).

This amounts to finding an orthonormal basis of eigenvectors and using them as the columns of U. For $\lambda=4$, the eigenvector with $z=0$ and the one with $x=0$ are already orthogonal, but we need to normalize the second one to unit length. For $\lambda=1$ we just need to normalize the one eigenvector. Result:

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & \sqrt{\frac{1}{3}} & -\sqrt{\frac{2}{3}} \\
0 & \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}}
\end{array}\right) .
$$

4. (10 pts.) Prove the formula $\nabla \cdot(f \mathbf{A})=f \nabla \cdot \mathbf{A}+\mathbf{A} \cdot \nabla f$, or correct the formula if it is wrong.
The best method is brute force:
$\nabla \cdot(f \mathbf{A}) \equiv \frac{\partial}{\partial x}\left(f A_{x}\right)+\frac{\partial}{\partial y}\left(f A_{y}\right)+\frac{\partial}{\partial z}\left(f A_{z}\right)=\frac{\partial f}{\partial x} A_{x}+f \frac{\partial A_{x}}{\partial x}+$ analogous terms $\equiv \nabla f \cdot \mathbf{A}+f \nabla \cdot \mathbf{A}$.
5. (30 pts.)
(a) Find a basis of eigenvectors of $M=\left(\begin{array}{cc}-2 & 1 \\ 2 & -3\end{array}\right)$.

The characteristic equation is

$$
0=\left|\begin{array}{cc}
-2-\lambda & 1 \\
2 & -3-\lambda
\end{array}\right|=(\lambda+2)(\lambda+3)-2=\lambda^{2}+5 \lambda+4=(\lambda+1)(\lambda+4) .
$$

So the eigenvalues are $\lambda=-1$ and $\lambda=-4$.
Eigenvectors with $\lambda=-1$: Matrix

$$
\left(\begin{array}{cc}
-1 & 1 \\
2 & -2
\end{array}\right) \Rightarrow-x+y=0 \Rightarrow \vec{u}_{1}=\binom{1}{1}
$$

will do. (To do this problem we don't need an orthonormal basis; in fact, we can't get one, because the two eigenspaces are not orthogonal, since the matrix is not symmetric.)

Eigenvectors with $\lambda=-4$: Matrix

$$
\left(\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right) \Rightarrow 2 x+y=0 \Rightarrow \vec{u}_{2}=\binom{1}{-2}
$$

will do.
So $\left\{\binom{1}{1},\binom{1}{-2}\right\}$ is an eigenbasis.
(b) Solve the ODE system $\begin{cases}\frac{d x}{d t}=-2 x+y, & x(0)=x_{0}, \\ \frac{d y}{d t}=2 x-3 y, & y(0)=y_{0} .\end{cases}$

The easiest way to organize this calculation is to use each eigenvector in the basis to construct a simple exponential solution, then add them with unknown coefficients:

$$
\binom{x(t)}{y(t)}=A \vec{u}_{1} e^{-t}+B \vec{u}_{2} e^{-4 t}
$$

Then set $t=0$:

$$
\binom{x_{0}}{y_{0}}=A\binom{1}{1}+B\binom{1}{-2}=\binom{A+B}{A-2 B}
$$

Solve: $\quad A=\frac{1}{3}\left(2 x_{0}+y_{0}\right), \quad B=\frac{1}{3}\left(x_{0}-y_{0}\right)$.
Summary of alternative method: Put the eigenvectors together to get a matrix

$$
U=\left(\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right), \quad U^{-1}=\frac{1}{3}\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right)
$$

that diagonalizes M and hence splits the problem into two decoupled scalar differential equations. Then the solution matrix is

$$
\begin{aligned}
e^{t M}=U\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{-4 t}
\end{array}\right) U^{-1} & =\frac{1}{3}\left(\begin{array}{cc}
2 e^{-t}+e^{-4 t} & e^{-t}-e^{-4 t} \\
2 e^{-t}-2 e^{-4 t} & e^{-t}+2 e^{-4 t}
\end{array}\right) \\
\binom{x(t)}{y(t)} & =e^{-t M}\binom{x_{0}}{y_{0}}
\end{aligned}
$$

which multiplies out to the same solution as above.
6. (30 pts.) Let $\mathbf{F}=x \hat{\imath}+y \hat{\jmath}+z^{2} \hat{k}$. Evaluate each of these surface integrals by a direct method (that is, don't try to use the Gauss or Stokes theorem).
(a) $\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}$, where S_{1} is the cylinder $r=4,0<z<2$. (Do not include end faces.)

The normal vector to the cylinder is

$$
\hat{n}=\hat{r}=\frac{x}{r} \hat{\imath}+\frac{y}{r} \hat{\jmath}=\cos \theta \hat{\imath}+\sin \theta \hat{\jmath} .
$$

Therefore the integrand is

$$
\mathbf{F} \cdot \hat{n}=\frac{x^{2}}{r}+\frac{y^{2}}{r}=r=4,
$$

and the integral is that times the surface area,

$$
(4)(2)(2 \pi)(4)=64 \pi .
$$

(b) $\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}$, where S_{2} is the parabolic surface $z=-x^{2},-1<x<1,0<y<2$.
(Use "mystical rules" or, equivalently, the method of three 2×2 determinants.)
We want to use x and y as the independent variables, so we work out

$$
d z=-2 x d x+0 d y
$$

and

$$
\begin{aligned}
\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S} & =\iint F_{x} d y d z+\iint F_{y} d z d x+\iint F_{z} d x d y \\
& =\iint x d y(-2 x d x)+\iint y(-2 x d x) d x+\iint z^{2} d x d y \\
& =\iint(+2) x^{2} d x d y+0+\iint x^{4} d x d y \\
& =\int_{0}^{2} d y \int_{-1}^{1}\left(2 x^{2}+x^{4}\right) d x \\
& =2\left[\frac{2}{3} x^{3}+\frac{x^{5}}{5}\right]_{-1}^{1}=4\left[\frac{2}{3}+\frac{1}{5}\right]=\frac{52}{15}
\end{aligned}
$$

7. (26 pts.) Determine whether each set is linearly independent. If not, find an independent set with the same span.
(a) $\{(1,0,1,0),(2,1,1,1),(5,1,4,1)\}$

Reduce

$$
\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
2 & 1 & 1 & 1 \\
5 & 1 & 4 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 1 & -1 & 1
\end{array}\right)
$$

and one more step reduces the bottom line to zeros. So the set is DEPENDENT, and a basis for its span is either the two nonzero rows of the final matrix, or any two vectors from the original set.
(b) $\{(1,0,1,0),(2,6,1,1),(5,1,4,2)\}$

Proceeding as before, you find that the bottom row does not zero out this time. So the set is INDEPENDENT.
(c) $\left\{1, \cos t, \sin t, \cos ^{2} t, \sin ^{2} t\right\}$

DEPENDENT. The identity $\cos ^{2} t+\sin ^{2} t=1$ can be used to eliminate one of the last two elements.
(d) $\left\{t^{2}+1, t^{2}-1, t\right\}$

INDEPENDENT. The first two elements are a basis for $\operatorname{span}\left\{t^{2}, 1\right\}$. Or, if that's not obvious, set up the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

and it's clear the rows are independent.
8. (16 pts.) Find an orthonormal basis for span $\left\{\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)\right\}$.

As usual in Gram-Schmidt problems, I'll call the given vectors $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$. I'll start with the unit vector along \vec{v}_{1},

$$
\vec{u}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) .
$$

Then the parallel part of \vec{v}_{2} is

$$
\vec{v}_{2 \|}=\left\langle\vec{u}_{1}, \vec{v}_{2}\right\rangle \vec{u}_{1}=\frac{5}{6}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),
$$

so the perpendicular part is

$$
\vec{v}_{2 \perp}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)-\frac{5}{6}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=\frac{1}{6}\left(\begin{array}{c}
7 \\
-4 \\
1
\end{array}\right) .
$$

The square of its norm is $\frac{1}{36}(49+16+1)=\frac{66}{36}$, so the second element of the normalized basis is

$$
\vec{u}_{2}=\frac{1}{\sqrt{66}}\left(\begin{array}{c}
7 \\
-4 \\
1
\end{array}\right) .
$$

9. (20 pts.) Do ONE of these (up to 8 points extra credit for doing TWO).
(A) Prove the theorem that $\operatorname{dim}($ domain $)=\operatorname{dim}($ kernel $)+\operatorname{dim}($ range $)$ for a linear function with a finite-dimensional domain. Hint: Choose or construct bases for the various subspaces involved.
[See the solutions for the Fall 2004 final exam, Question 10(A).]
(B) An inner product is defined by the formula

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(t) g(t) e^{-|t|} d t
$$

Find its first 3 orthogonal polynomials. (Don't bother to normalize the last one.) Free information: $\int_{0}^{\infty} t^{n} e^{-t} d t=n!$.
Note first that

$$
\int_{-\infty}^{\infty} t^{n} e^{-|t|} d t= \begin{cases}0 & \text { if } n \text { is odd } \\ 2 n! & \text { if } n \text { is even }\end{cases}
$$

Let $v_{n}=t^{n}$ and let \hat{u}_{n} be the resulting orthogonal polynomials (normalized).
Step 0: We have $\left\|v_{0}\right\|^{2}=\int_{-\infty}^{\infty} e^{-|t|} d t=2$ and hence

$$
\hat{u}_{0}=\frac{1}{\sqrt{2}} .
$$

Step 1: $\left\langle\hat{u}_{0}, v_{1}\right\rangle=\frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} t e^{-|t|} d t=0$. Therefore, $v_{1 \perp}=v_{1}$. Then

$$
\left\|v_{1 \perp}\right\|^{2}=\int_{-\infty}^{\infty} t^{2} e^{-|t|} d t=4
$$

and

$$
\hat{u}_{1}=\frac{1}{2} t .
$$

Step 2: $\left\langle\hat{u}_{1}, v_{2}\right\rangle=0$. Therefore,

$$
v_{2 \|}=\left\langle\hat{u}_{0}, v_{2}\right\rangle \hat{u}_{0}=\frac{1}{2} \int_{-\infty}^{\infty} t^{2} e^{-|t|} d t=2
$$

Thus $v_{2 \perp}=t^{2}-2$, and here's where we agreed to stop.

