
Math. 311 (Fulling) 15 December 2014

Final Examination – Solutions

Name:

Calculators may be used for simple arithmetic operations only!

1. (18 pts.) Which of these formulas define inner products on R3 ? Explain what’s wrong
with those that don’t. ( r1 = (x1, y1, z1) , etc.)

(a) 〈r1, r2〉 = x1
2x2

2 + y1
2y2

2 + z1
2z2

2

NO — not bilinear.

(b) 〈r1, r2〉 = x1x2 − y1y2 + z1z2
NO — not positive definite.

(c) 〈r1, r2〉 = x1x2 + 2y1y2 + 3z1z2
YES (bilinear, symmetric, positive definite).

2. (15 pts.) Three variables are constrained by the equations

x2 + y2 + z2 = 26 and xyz = −12 .

Find ∂x
∂z

and ∂y
∂z

at the point (x, y, z) = (1,−3, 4) .

Differentiate both equations with respect to z :

2x
∂x

∂z
+ 2y

∂y

∂z
+ 2z = 0 yz

∂x

∂z
+ xz

∂y

∂z
+ xy = 0 .

Plug in the numbers:

2
∂x

∂z
− 6

∂y

∂z
= −8 , −12

∂x

∂z
+ 4

∂y

∂z
= 3 .

Solve by either Gauss–Jordan or Cramer method:

∂x

∂z
=

7

32
,

∂y

∂z
=

45

32
.

3. (35 pts.) Let M =





4 0 0
0 2

√
2

0
√
2 3



 .

(a) Find all eigenvalues and eigenvectors of M .

The characteristic (or secular) equation is

0 =

∣

∣

∣

∣

∣

4− λ 0 0

0 2− λ
√
2

0
√
2 3− λ

∣

∣

∣

∣

∣

= (4− λ)[(λ− 2)(λ− 3)− 2] = (4− λ)(λ2 − 5λ+ 4) = (λ− 4)2(λ− 1)
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— from which it is clear that the eigenvalues are

λ = 4 (a double root), λ = 1 .

Eigenvectors with λ = 4 : Solve the homogeneous system with matrix

(

0 0 0

0 −2
√
2

0
√
2 −1

)

−→
(

0 1 − 1√
2

0 0 0

0 0 0

)

:

x is arbitrary , y =
z√
2
, z is arbitrary .

Eigenvectors with λ = 1 : Solve the homogeneous system with matrix

(

3 0 0

0 1
√
2

0
√
2 2

)

−→
(

1 0 0

0 1
√
2

0 0 0

)

:

x = 0 , y = −
√
2 z , z is arbitrary .

(b) A function f(x, y, z) satisfies f(0, 0, 0) = 10 , ∇f(0, 0, 0) = 0 , and

{

∂2f

∂xj ∂xk

}

= M .

Is (0, 0, 0) a maximum, minimum, or saddle point of f ?

minimum, because all eigenvalues are positive.

(c) Find an orthogonal matrix U that diagonalizes M (that is, M = UDU−1 ).

This amounts to finding an orthonormal basis of eigenvectors and using them as the columns of U .
For λ = 4 , the eigenvector with z = 0 and the one with x = 0 are already orthogonal, but we need
to normalize the second one to unit length. For λ = 1 we just need to normalize the one eigenvector.
Result:

U =







1 0 0

1

√

1

3
−
√

2

3

0

√

2

3

√

1

3






.

4. (10 pts.) Prove the formula ∇ · (fA) = f ∇ ·A +A · ∇f , or correct the formula if it is
wrong.

The best method is brute force:

∇· (fA) ≡ ∂

∂x
(fAx)+

∂

∂y
(fAy)+

∂

∂z
(fAz) =

∂f

∂x
Ax+f

∂Ax

∂x
+analogous terms ≡ ∇f ·A+f ∇·A .
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5. (30 pts.)

(a) Find a basis of eigenvectors of M =

(

−2 1
2 −3

)

.

The characteristic equation is

0 =

∣

∣

∣

∣

−2− λ 1

2 −3− λ

∣

∣

∣

∣

= (λ+ 2)(λ+ 3)− 2 = λ
2 + 5λ+ 4 = (λ+ 1)(λ+ 4) .

So the eigenvalues are λ = −1 and λ = −4 .
Eigenvectors with λ = −1 : Matrix

(

−1 1

2 −2

)

⇒ −x+ y = 0 ⇒ ~u1 =

(

1

1

)

will do. (To do this problem we don’t need an orthonormal basis; in fact, we can’t get one, because
the two eigenspaces are not orthogonal, since the matrix is not symmetric.)

Eigenvectors with λ = −4 : Matrix
(

2 1

2 1

)

⇒ 2x+ y = 0 ⇒ ~u2 =

(

1

−2

)

will do.

So

{(

1

1

)

,

(

1

−2

)}

is an eigenbasis.

(b) Solve the ODE system











dx

dt
= −2x+ y , x(0) = x0 ,

dy

dt
= 2x− 3y , y(0) = y0 .

The easiest way to organize this calculation is to use each eigenvector in the basis to construct a
simple exponential solution, then add them with unknown coefficients:

(

x(t)

y(t)

)

= A~u1e
−t +B~u2e

−4t
.

Then set t = 0 :
(

x0

y0

)

= A

(

1

1

)

+B

(

1

−2

)

=

(

A+B

A− 2B

)

.

Solve: A = 1

3
(2x0 + y0) , B = 1

3
(x0 − y0) .

Summary of alternative method: Put the eigenvectors together to get a matrix

U =

(

1 1

1 −2

)

, U
−1 =

1

3

(

2 1

1 −1

)

,

that diagonalizes M and hence splits the problem into two decoupled scalar differential equations.
Then the solution matrix is

e
tM = U

(

e−t 0

0 e−4t

)

U
−1 =

1

3

(

2e−t + e−4t e−t − e−4t

2e−t − 2e−4t e−t + 2e−4t

)

;

(

x(t)

y(t)

)

= e
−tM

(

x0

y0

)

,

which multiplies out to the same solution as above.
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6. (30 pts.) Let F = x ı̂ + y ̂ + z2 k̂ . Evaluate each of these surface integrals by a direct
method (that is, don’t try to use the Gauss or Stokes theorem).

(a)

∫∫

S1

F · dS , where S1 is the cylinder r = 4 , 0 < z < 2 . (Do not include end faces.)

The normal vector to the cylinder is

n̂ = r̂ =
x

r
ı̂+

y

r
̂ = cos θ ı̂+ sin θ ̂.

Therefore the integrand is

F · n̂ =
x2

r
+

y2

r
= r = 4 ,

and the integral is that times the surface area,

(4)(2)(2π)(4) = 64π .

(b)

∫∫

S2

F · dS , where S2 is the parabolic surface z = −x2 , −1 < x < 1 , 0 < y < 2 .

(Use “mystical rules” or, equivalently, the method of three 2× 2 determinants.)
We want to use x and y as the independent variables, so we work out

dz = −2xdx+ 0 dy

and
∫∫

S2

F · dS =

∫∫

Fx dy dz +

∫∫

Fy dz dx+

∫∫

Fz dx dy

=

∫∫

x dy (−2xdx) +

∫∫

y(−2x dx) dx+

∫∫

z
2
dx dy

=

∫∫

(+2)x2 dx dy + 0 +

∫∫

x
4
dx dy

=

∫ 2

0

dy

∫ 1

−1

(2x2 + x
4) dx

= 2

[

2

3
x
3 +

x5

5

]1

−1

= 4
[

2

3
+

1

5

]

=
52

15
.

7. (26 pts.) Determine whether each set is linearly independent. If not, find an independent
set with the same span.

(a) {(1, 0, 1, 0), (2, 1, 1, 1), (5, 1, 4, 1)}
Reduce

(

1 0 1 0

2 1 1 1

5 1 4 1

)

−→
(

1 0 1 0

0 1 −1 1

0 1 −1 1

)

,

and one more step reduces the bottom line to zeros. So the set is DEPENDENT, and a basis for its
span is either the two nonzero rows of the final matrix, or any two vectors from the original set.
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(b) {(1, 0, 1, 0), (2, 6, 1, 1), (5, 1, 4, 2)}
Proceeding as before, you find that the bottom row does not zero out this time. So the set is
INDEPENDENT.

(c) {1, cos t, sin t, cos2 t, sin2 t}
DEPENDENT. The identity cos2 t+sin2 t = 1 can be used to eliminate one of the last two elements.

(d) {t2 + 1, t2 − 1, t}
INDEPENDENT. The first two elements are a basis for span {t2, 1} . Or, if that’s not obvious, set
up the matrix

(

1 0 1

1 0 −1

0 1 0

)

−→
(

1 0 1

0 1 0

0 0 −2

)

,

and it’s clear the rows are independent.

8. (16 pts.) Find an orthonormal basis for span











1
2
1



 ,





2
1
1











.

As usual in Gram–Schmidt problems, I’ll call the given vectors {~v1,~v2} . I’ll start with the unit
vector along ~v1 ,

~u1 =
~v1

‖~v1‖
=

1√
6

(

1

2

1

)

.

Then the parallel part of ~v2 is

~v2‖ = 〈~u1,~v2〉~u1 =
5

6

(

1

2

1

)

,

so the perpendicular part is

~v2⊥ =

(

2

1

1

)

− 5

6

(

1

2

1

)

=
1

6

(

7

−4

1

)

.

The square of its norm is 1

36
(49 + 16 + 1) = 66

36
, so the second element of the normalized basis is

~u2 =
1√
66

(

7

−4

1

)

.

9. (20 pts.) Do ONE of these (up to 8 points extra credit for doing TWO).

(A) Prove the theorem that dim(domain) = dim(kernel) + dim(range) for a linear
function with a finite-dimensional domain. Hint: Choose or construct bases for the
various subspaces involved.

[See the solutions for the Fall 2004 final exam, Question 10(A).]
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(B) An inner product is defined by the formula

〈f, g〉 =
∫ ∞

−∞
f(t)g(t) e−|t| dt .

Find its first 3 orthogonal polynomials. (Don’t bother to normalize the last one.)
Free information:

∫∞
0 tn e−t dt = n! .

Note first that
∫ ∞

−∞
t
n
e
−|t|

dt =

{

0 if n is odd,

2n! if n is even.

Let vn = tn and let ûn be the resulting orthogonal polynomials (normalized).

Step 0: We have ‖v0‖2 =
∫∞
−∞ e−|t| dt = 2 and hence

û0 =
1√
2
.

Step 1: 〈û0, v1〉 = 1√
2

∫∞
−∞ te−|t| dt = 0 . Therefore, v1⊥ = v1 . Then

‖v1⊥‖2 =

∫ ∞

−∞
t
2
e
−|t|

dt = 4 ,

and

û1 =
1

2
t .

Step 2: 〈û1, v2〉 = 0 . Therefore,

v2‖ = 〈û0, v2〉û0 =
1

2

∫ ∞

−∞
t
2
e
−|t|

dt = 2 .

Thus v2⊥ = t2 − 2 , and here’s where we agreed to stop.


