Test C - Solutions

Name:

Calculators may be used for simple arithmetic operations only!

1. (23 pts.) The formula $\langle p, q\rangle=\int_{-\infty}^{\infty} p(t) q(t) e^{-t^{2}} d t$ defines an inner product on the vector space of polynomials. Find the first three of the orthonormal polynomials associated with this inner product. (Apply the Gram-Schmidt algorithm to the power functions.) Free INFORMATION:

$$
\int_{-\infty}^{\infty} e^{-t^{2}} d t=\sqrt{\pi}, \quad \int_{-\infty}^{\infty} t^{2} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2}, \quad \int_{-\infty}^{\infty} t^{4} e^{-t^{2}} d t=\frac{3 \sqrt{\pi}}{4}
$$

Let $v_{n}=t^{n}$ and let \hat{u}_{n} be the resulting orthogonal polynomials (normalized).
Step 0: We have $\left\|v_{0}\right\|^{2}=\int_{-\infty}^{\infty} e^{-t^{2}} d t=\pi^{1 / 2}$ and hence

$$
\hat{u}_{0}=\pi^{-1 / 4} .
$$

Step 1: $\left\langle\hat{u}_{0}, v_{1}\right\rangle=\pi^{-1 / 4} \int_{-\infty}^{\infty} t e^{-t^{2}} d t=0$ because the integrand is odd. Therefore, $v_{1 \perp}=v_{1}$. Then

$$
\left\|v_{1 \perp}\right\|^{2}=\int_{-\infty}^{\infty} t^{2} e^{-t^{2}} d t
$$

and

$$
\hat{u}_{1}=\sqrt{2} \pi^{-1 / 4} t .
$$

Step 2: $\left\langle\hat{u}_{1}, v_{2}\right\rangle=0$, again because the integrand is odd. Therefore,

$$
v_{2 \|}=\left\langle\hat{u}_{0}, v_{2}\right\rangle \hat{u}_{0}=\pi^{-1 / 2} \int_{-\infty}^{\infty} t^{2} e^{-t^{2}} d t=\frac{1}{2} .
$$

Thus $v_{2 \perp}=t^{2}-\frac{1}{2}$, and

$$
\left\|v_{2 \perp}\right\|^{2}=\int_{-\infty}^{\infty}\left(t^{4}-t^{2}+\frac{1}{4}\right) e^{-t^{2}} d t=\sqrt{\pi}\left(\frac{3}{4}-\frac{1}{2}+\frac{1}{4}\right)=\frac{\sqrt{\pi}}{2} .
$$

So

$$
\hat{u}_{2}=\sqrt{2} \pi^{-1 / 4}\left(t^{2}-\frac{1}{2}\right) .
$$

2. (35 pts.) Let $\mathbf{A}(\mathbf{r})=x z \hat{\imath}+y z \hat{\jmath}+z^{2} \hat{k}$ and $\mathbf{B}(\mathbf{r})=-y \hat{\imath}+x \hat{\jmath}$. Also, let S be the surface of the unit cube with its bottom face omitted. (That is, S is the union of 5 square faces, one of which is $\{0<x<1, y=1,0<z<1\}$ and the other 4 are similar, the face that is left out being $\{0<x<1,0<y<1, z=0\}$.) Finally, define $I=\iint_{S} \mathbf{B} \cdot d \mathbf{S}$ (with the "upward and outward" orientation).
(a) Calculate $\nabla \cdot \mathbf{A}, \nabla \times \mathbf{A}, \nabla \cdot \mathbf{B}$, and $\nabla \times \mathbf{B}$.

$$
\nabla \cdot \mathbf{A}=z+z+2 z=4 z
$$

$$
\begin{gathered}
\nabla \times \mathbf{A}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x z & y z & z^{2}
\end{array}\right|=-y \hat{\imath}+x \hat{\jmath}=\mathbf{B} . \\
\nabla \cdot \mathbf{B}=0 . \\
\nabla \times \mathbf{B}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
-y & x & 0
\end{array}\right|=2 \hat{k} .
\end{gathered}
$$

(b) Evaluate I.

Because $\nabla \cdot \mathbf{B}=0$, we can move the surface to the bottom side of the cube. The normal vector to that surface is \hat{k}. But $\mathbf{B} \cdot \hat{k}=0$, so the integral is 0 .
(c) Evaluate I again, by a completely different method.

Because $\mathbf{B}=\nabla \times \mathbf{A}$, the integral equals the line integral of \mathbf{A} around the square at the base. But $\mathbf{A}=0$ everywhere on the plane $z=0$, so again $I=0$.
(d) Evaluate I by yet a third, completely different, method.

OK, we have to bite the bullet and evaluate the 5 surface integrals. But they are easy: The integral over the top of the cube is 0 because the normal vector is \hat{k}. On the two sides with normal vector $\pm \hat{\imath}$ the integrand is $\mp y$; the integrals

$$
\int_{0}^{1} \int_{0}^{1}(\mp y) d y d z
$$

over the two sides cancel. On the two sides with normal vector $\pm \hat{\jmath}$ the integrand is $\pm x$; the two integrals cancel for the same reason. So $I=0$.
3. (12 pts.) Using an efficient method, evaluate the determinant $\left|\begin{array}{ccccc}1 & 0 & 1 & 0 & 2 \\ 5 & 0 & -1 & 3 & 1 \\ 1 & 3 & 2 & 0 & 9 \\ -1 & 0 & 1 & 2 & -2 \\ 1 & 0 & 1 & 1 & 1\end{array}\right|$.

There are many correct methods. Here is a good one: Expand in cofactors of the 2nd column:

$$
(-3)\left|\begin{array}{cccc}
1 & 1 & 0 & 2 \\
5 & -1 & 3 & 1 \\
-1 & 1 & 2 & -2 \\
1 & 1 & 1 & 1
\end{array}\right|
$$

Subtract multiples of the 1st row to clear out the 1st column:

$$
(-3)\left|\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & -6 & 3 & -9 \\
0 & 2 & 2 & 0 \\
0 & 0 & 1 & -1
\end{array}\right| .
$$

Expand in cofactors of the 1st column:

$$
(-3)\left|\begin{array}{ccc}
-6 & 3 & -9 \\
2 & 2 & 0 \\
0 & 1 & -1
\end{array}\right|
$$

Extract common factors from two rows:

$$
(+18)\left|\begin{array}{ccc}
2 & -1 & 3 \\
1 & 1 & 0 \\
0 & 1 & -1
\end{array}\right|
$$

Expand in cofactors of the 3rd row:

$$
(-18)\left[\left|\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right|+\left|\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right|\right] .
$$

Combine by multilinearity in the 2 nd column:

$$
(-18)\left|\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right|=0
$$

4. (30 pts.) Define coordinates (u, v) in a certain region of \mathbf{R}^{2} by $\left\{\begin{array}{l}x=u \sinh v, \\ y=u \cosh v\end{array}\right.$
(a) Find the formulas for the tangent vectors to the coordinate curves (at a generic point $(u, v))$.

$$
\frac{\partial \mathbf{r}}{\partial u}=\binom{\sinh v}{\cosh v}, \quad \frac{\partial \mathbf{r}}{\partial v}=\binom{u \cosh v}{u \sinh v} .
$$

(b) Find the formulas (in terms of u and v) for the normal vectors to the coordinate curves.
Here and in (c) the Jacobian determinant will be useful:

$$
\left|\begin{array}{ll}
\sinh v & u \cosh v \\
\cosh v & u \sinh v
\end{array}\right|=u \sinh ^{2} v-u \cosh ^{2} v=-u
$$

The inverse matrix is

$$
\frac{1}{-u}\left(\begin{array}{cc}
u \sinh v & -u \cosh v \\
-\cosh v & \sinh v
\end{array}\right) .
$$

The normal vectors are the rows of this matrix:

$$
\nabla u=(-\sinh v, \cosh v), \quad \nabla v=\left(\frac{\cosh v}{u},-\frac{\sinh v}{u}\right) .
$$

Comment: We can check that these satisfy the reciprocity relations

$$
\nabla u \cdot \frac{\partial \mathbf{r}}{\partial u}=1, \quad \nabla u \cdot \frac{\partial \mathbf{r}}{\partial v}=0, \quad \text { etc. }
$$

(This checks that you inverted the matrix correctly.) Each basis by itself is not orthonormal, however.
(c) Find the area of the region bounded by the curves $u=1, u=2, v=0$, and $v=2$. (Set up the integral, don't evaluate it.)
Integrate the absolute value of the determinant over the region:

$$
\int_{1}^{2} d u \int_{0}^{2} d v u=\left.2 \frac{u^{2}}{2}\right|_{1} ^{2}=3
$$

(The evaluation is too trivial to resist.)
(d) What is the "certain region"? (Assume that u is always positive but v ranges over all R.) Sketch (in the $x-y$ plane) the coordinate curve $u=2$ and the coordinate curve $v=1$. Also, sketch the four vectors in (a) and (b) at the point where $(u, v)=$ $(1,0)$. (Graphing calculators are allowed.)
The region covered by these coordinates is that where $|x|<y$ - i.e., the "wedge" above both lines $y=-x$ and $y=x$. A curve of constant u is a hyperbola, and a curve of constant v is a straight line coming out of the origin of the Cartesian coordinates. The indicated point is $(x, y)=(0,1)$, and the vectors there are

$$
\frac{\partial \mathbf{r}}{\partial u}=\nabla u=\binom{0}{1}, \quad \frac{\partial \mathbf{r}}{\partial v}=\nabla v=\binom{1}{0} .
$$

So at this particular point the two bases are orthonormal, and equal. The basis is left-handed, reflecting the negative value of the Jacobian determinant.

