
Chapter 1

Vectors

1.1 Vectors that You Know

Vectors (and things made out of vectors or related to them) are the main
subject matter of this book. Instead of starting with a precise mathematical
definition of a vector, we give an informal, intuitive definition and discuss
some examples.

Vectors are things that can be added to each other and

multiplied by numbers.

This definition assumes that we all have intuitive notions of addition and
multiplication, which can be carried over from ordinary numbers to other
kinds of objects. This will be seen to be true for each type of example we
discuss. A later chapter contains the unambiguous, formal definitions of
“addition”, “multiplication”, and “vector” that historically arose out of such
examples.

Example 1. Probably the most familiar vectors are those introduced in
physics courses and characterized as physical quantities with both magnitude

and direction. These include forces, velocities, electric fields, temperature
gradients, magnetic moments. They are customarily drawn as arrows.

Within this geometrical conception of vectors as arrows, there is a well
known construction for adding two vectors, shown in the drawing below.
Initially the two arrows are thought of as rooted at the same point (the
origin, or zero vector). One way of describing the sum is to slide one of the
vectors (say ~u) along the other one (~v), without rotating it or changing its
length, so that the tail of ~u is at the head of ~v. Then the sum ~v + ~u is the
arrow with its tail at the tail of ~v and its head at the head of ~u, so that
the three vectors form a triangle. Entirely equivalent to this “triangle rule”
is the “parallelogram rule”: Draw the parallelogram with ~u (in its original
position) and ~v as adjacent sides. Then ~v + ~u is the arrow pointing along
the diagonal of the parallelogram starting from the origin.
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The other half of the drawing shows how one multiplies a vector by a
number geometrically: Simply put, the vector ~v is stretched by the numerical
factor r. The word “stretching” is appropriate if r is a positive number
greater than 1. If 0 ≤ r < 1, then “shrinking” is a better description. If r

is negative, the arrow is reflected (so that it points in the opposite direction
from the origin) in addition to a stretching or shrinking.

In this discussion we have tacitly assumed that r is a real number.
Types of vectors that can be multiplied by complex numbers also arise. In
this book we will deal mostly with real vector spaces. When complex vector
spaces come up, we will call special attention to them; otherwise, all numbers
are assumed to be real.

Example 2. Vectors are encountered in elementary courses also in the
form of n-tuples of real numbers. A 2-tuple is a pair, such as (2, 3), and
the vector space of all such pairs is called R2. Similarly, R3 consists of all
strings of three numbers, and so on. Two pairs are added “componentwise”,
or “slot by slot”:

(2, 3) +
(

1
2 ,−1

)
=

(
5
2 , 2

)
.

More formally, we can write down the definition of the sum of two vectors
in any Rn:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) ≡ (a1 + b1, a2 + b2, . . . , an + bn).

Similarly, multiplication is defined componentwise:

3(1, 3, 1) = (3, 9, 3);

r(a1, a2, . . . , an) ≡ (ra1, ra2, . . . , ran).

(The symbol “≡” means “equal by definition”.)
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Example 1 can be related to Example 2 by introducing a coordinate
system into the geometrical space of Example 1:
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Each physical vector is identified with a string of three numbers, (x1, x2, x3)
or (x, y, z). For example, the y component a2 of the vector ~A is its projection
onto the y axis, measured as a multiple of the unit vector or basis vector ̂

along that axis.

Indeed, we understand this sitation so well that we often think of Exam-
ples 1 and 2 as being the same thing! (Technically, one says that these two
spaces of vectors are isomorphic.) Note, however, that the correspondence
between them depends on the coordinate system. Introduce a rotated set of
axes, and the same physical vector will correspond to a different string of
numbers.

Important Notational Remark: There are several notations for vec-
tors and their coordinates, and for basis vectors, which have grown up in
connection with various applications. It is important to be able to deal
with all of them and to tolerate occasional inconsistencies in notation. For
example, a two-dimensional vector may be written in the various ways

(3, 1) = 3ı̂ + ̂ = 3(1, 0) + (0, 1) = 3ê1 + ê2 ,

or, more generally,

~A = (a1, a2) = (A1, A2) = a1ê1 + a2ê2 = Ax ı̂ + Ay ̂,

etc. It is an unpleasant but unavoidable fact that sometimes numerical
subscripts must be used to distinguish different vectors from each other, as
well as, or instead of, to distinguish the different coordinates of the same
vector. Since this issue will arise frequently in exercises and examples in the
rest of this book, we shall belabor it a bit here. When we need to discuss



4 1. Vectors

two vectors in a two-dimensional space, we might call the vectors ~x and ~y

and write them out as

~x = (x1, x2), ~y = (y1, y2).

On another occasion, however, we may call the vectors ~x1 and ~x2 and write
them out as

~x1 = (x1, y1), ~x2 = (x2, y2).

Yes, this can be confusing, but an attempt to stick to a consistent nota-
tion would be misguided. Both notational conventions are used in the Real
World, each has advantages under certain circumstances, and you must be
prepared to handle whichever notation arises in any particular problem. In
applications a vector (x, y, z) representing a point in physical space is often
denoted by ~r (rather than ~x), and we shall follow that convention when it
seems best.

Remark on Terminology: Strictly speaking, a coordinate of the
vector (3, 1) = 3ı̂ + ̂ is one of the numbers, 3 and 1, that appear in its
expansion as a linear combination of basis vectors; whereas a component of
the vector is another vector, the part of the given vector that points along one
of the basis vectors: the component of (3, 1) along ı̂ is 3ı̂ or (3, 0). However,
“component” is frequently used also to mean the same thing as “coordinate”;
indeed, “coordinate” sounds strange in nongeometrical contexts (such as the
example in the next paragraph).

It should be noted that n-tuples also occur in contexts where the di-
rections involved are not in physical space. For example, in an economic or
business application the numerical components aj , bj , . . . (j = 1, . . . , n) of
some vectors ~a, ~b, . . . may be the prices, production quantities, and so on of
n commodities. For instance, suppose a shirt factory produces per month

b1 T-shirts of size S,

b2 T-shirts of size M,

b3 T-shirts of size L,

b4 T-shirts of size XL,

and the company prices size-S shirts at p1 dollars each, etc. Then the pro-
duction level of the factory is summarized by the vector ~b; the vector 3~b is
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what would be produced by three identical such factories; and
4∑

j=1

pjbj ≡ ~p ·~b (1)

is the total revenue brought in by selling all the shirts produced.
In the expression (1) we recognize the familiar vector dot product, which

also appears in such formulas from physics as W = ~F · ~x for the work done
by a force that moves a body through a displacement ~x. This operation
of multiplying two vectors to get a number is not part of the definition of
a general vector space; it is “extra structure” that exists in some concrete
vector spaces but not others. It will be treated further in Chapter 6. (See also
the discussions of row vs. column vectors in Sections 2.4, 4.5, and elsewhere.)

To most students the word “vector” already calls to mind one or the
other of the two types of vectors just discussed. The next two examples are
equally familiar mathematical objects, but possibly you have never thought
of them as vectors.

Example 3: Polynomials. Consider the power functions

{1, t, t2, t3, . . . }.
These can be added together with numerical coefficients: e.g., 3t3 − t + 2.
(Such a thing is called a linear combination of the vectors you start with.)
We are used to manipulating these coefficients just like the components of
ordinary vectors: We know how to add them by combining terms,

(t2 + 3) + (t− 5) = t2 + t− 2,

and we also know that the result can’t be simplified any further. Note that
the powers are playing the same role as the unit vectors {ı̂, ̂} along the
coordinate axes in Example 2. In each case we have a certain list of vectors
from which all the vectors in the space can be built up by linear combination
(and none of the vectors in the list can be left out); such a list is called a
basis. The crucial difference is that in the vector space of polynomials the
basis list is infinite (although any particular polynomial contains only finitely
many terms).

Example 4: Solutions of homogeneous linear differential equations.
Consider the ordinary differential equation

d2y

dt2
+ 4y = 0.
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One of the first things taught in a course on differential equations is that
this type of equation is most easily solved by means of complex numbers.
The exponential of an imaginary number is defined as

eiθ = cos θ + i sin θ, (2)

and the resulting exponential function of a complex variable can be shown
to possess the familiar algebraic and calculus properties of the exponential
of a real variable. Therefore,

y = f(t) = Ae2it + B e−2it, (3)

with A and B arbitrary complex numbers, is a solution of the differential
equation. Furthermore, every complex-valued solution is of this form. The
space of all these is a vector space. (We get new solutions by adding old
ones together and by multiplying old ones by numbers. This is called the
“principle of superposition” for homogeneous linear equations.) In fact, the
formula sets up an identification between these vectors and the pairs of com-
plex coefficients: f ↔ (A,B). This is another example of an isomorphism,
and the two exponential functions are another example of a basis.

A different isomorphism is given by the equally valid formula

f(t) = C cos(2t) + D sin(2t). (4)

Formula (2) and the formulas

e−iθ = cos θ − i sin θ,

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
(5)

that follow from it enable us to write C and D in terms of A and B or
vice versa. (If this is not already familiar to you, you should do Exercise
1.1.12 now!) The passage from (3) to (4) is very much like the effect of
a rotation of axes in Examples 1 and 2. If we are interested only in real-
valued solutions, we’ll prefer the trigonometric basis in (4) and require C

and D to be real instead of complex. On the other hand, the exponential
basis in (3) is very useful in finding the solutions in the first place. (Just
substitute y = ert and solve for r. The reason this trick works is that the
derivative of an exponential function is a numerical multiple of the function



1.1. Vectors that you know 7

itself. Such a function is an eigenvector of the operation of differentiation
— see Chapter 8.)

Many of the facts about linear ordinary differential equations taught in
differential-equation courses are actually general principles of linear algebra
(vector-space theory), not special to ordinary differential equations. Under-
standing this makes it easy to see how to extend those methods to partial
differential equations, for instance.

A central theme of this book — and of all mathematics — is the “up and
back down” process demonstrated in the broadening of the vector concept
from Examples 1 and 2 to include Examples 3 and 4. Experience with
the comparatively elementary concepts of geometrical and numerical vectors
leads to the formulation of a more abstract and general concept of a vector
space (whose details we have postponed to Chapter 3). One then recognizes
vectors in many other concrete situations, such as differential equations, and
the abstract concept and the theorems derived from it provide powerful new
tools for understanding those subjects and solving problems within them.

Exercises

1.1.1 Let ~u = (1, 2) and ~v = (1,−1). On graph paper, sketch ~u and ~v as
arrows rooted at the origin. Then, from the geometrical definitions
of the vector operations, sketch (and label)

(a) ~u + ~v, (b) ~u− ~v,

(c) 3~v, (d) 1
2~u− 2~v.

(A protractor, as well as a ruler, will be helpful.) Finally, check
how well your results agree with the arithmetical definitions of these
vectors. (Correct any gross errors in the sketch, but accept minor
inaccuracies as the inevitable result of the approximate nature of the
sketching process.)

1.1.2 Let ~x = (1, 2, 3), ~y = (1,−1, 1), ~z = (−2, 2,−2). Calculate

(a) ~x + ~y, (b) ~z − ~x,

(c) 3~x− 4~y + ~z, (d) ~z + 2~y.

1.1.3 For the vectors defined in Exercise 1.1.2, calculate

(a) ~x · ~y, (b) ~x · ~z, (c) ~z · ~y.
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1.1.4 Compare parts (a) and (b) of Exercise 1.1.3, and formulate the general
theorem that the comparison illustrates.

1.1.5 For the vectors defined in Exercise 1.1.2, write out and simplify the
formula ~v ≡ a~x + b~y + c~z, where a, b, and c are arbitrary numbers.
Then show that:

(a) Any change in b can be compensated by a change in c (so that ~v

is unchanged).

(b) The coefficient a cannot be changed without changing ~v, regard-
less of what happens to the other two coefficients.

1.1.6 Simplify:

(a) 3(t2 + 3t + 2)− 10(t3 + t2 − 10) + 4(t− 1)2 − t + 5

(b) −6(cos(2t) + 3 sin(2t)) + 5 cos(2t) + 3e2it

1.1.7 Let ~x = (1, 1) and ~y = (0, 2).

(a) (trivial) Express ~x as a linear combination of the basis vectors ı̂

and ̂.

(b) Express ı̂ as a linear combination of ~x and ~y.

1.1.8 (a) Simplify (t−3)3 +5(t−3)2−10(t−3)+1 into the standard form
for polynomials (a linear combination of powers of t).

(b) Express t2 + 2 as a linear combination of the powers of (t− 3).

1.1.9 (a) Express 3 cos t− 2 sin t as a linear combination of eit and e−it.

(b) Express e3it−2e−3it as a linear combination of the trigonometric
functions sin(3t) and cos(3t).

1.1.10 Let ~u = (10, 5, 0.1) represent the amount of flour, sugar, and baking
powder required to produce a dozen bagels, and let ~v = (20, 7, 0.5)
be the corresponding vector for a loaf of bread. Provide in words an
interpretation for 60~u + 200~v.

1.1.11 Whizbang Supersystems Inc. manufactures three models of computer,
the Nerdstation 1000, 3000, and 5000. Each is priced according to its
name (the cheapest costs $1000, etc.)

(a) Show how the total revenue of the company can be expressed as
a dot product of two vectors. (Define notation clearly.)
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(b) The fixed cost of operating the Whizbang factory is $100,000
per year. The production costs of Nerdstations is expressed by
the vector ~c = (500, 1000, 1500). (That is, it costs $500 to make
one Model 1000, etc.) Find a formula in vector notation for the
company’s annual profit.

1.1.12 (a) Prove (5) from (2) (assuming the well known facts cos(−θ) =
cos θ, sin(−θ) = − sin θ).

(b) Using (2) and (5), work out the equations expressing A and B

in (3) in terms of C and D in (4), and the equations expressing
C and D in terms of A and B.

1.2 Lines and Planes

When dealing with R3 or with physical space modeled by R3 (see the
first two examples in Sec. 1.1), it is convenient to represent the different
coordinates of a vector by different letters, thereby minimizing the use of
subscripts:

~r = (x, y, z).

Often one deals with problems that are essentially two-dimensional; then the
z component can be dropped:

~r = (x, y) ∈ R2.

Once the origin of a coordinate system in physical space has been fixed, each
point in space can be identified with the vector with head at the point and
tail at the origin.

As you know, a (straight) line in R2 can be defined by an equation of
the form

ax + by = c, (1)

where a, b, and c are constants. (Obviously, the equation is not unique, since
all three constants can be multiplied by a nonzero number without changing
the set of solutions (x, y).) Let us call this the equation form of a line. (If b

is not zero, (1) can be rearranged into the “functional” form, y = mx + d.)



10 1. Vectors

There is, however, another, equally good, way of representing a line.
Introduce a new variable, t, which ranges through all the real numbers
(−∞ < t <∞). Consider (for example) the functions

x = 3t− 2, y = 2t.

Plotting the points (x, y) on graph paper for various values of t, one easily
sees that they form a line. We can put the coordinates together in vectorial
form:

~r(t) =
(

x
y

)
=

(
3t− 2

2t

)
. (∗)

Using the definitions of vector addition and multiplication, we can rewrite
this as

~r = t

(
3
2

)
+

(−2
0

)
.

Thus each point on the line can be obtained by adding a fixed, or constant,
vector to an arbitrary multiple of another fixed vector. The general case is

~r = t~u + ~r0 (2)

(where vectors ~u and ~r0 are fixed, and t and ~r are variables). This is called
the parametric form of a line (t being the “parameter” involved).

Notational remark: In the foregoing paragraph we have begun the
practice of writing vectors as columns of numbers instead of rows. This made
the equation (∗) easier to read by separating the two coordinate formulas
visually. Later (Secs. 2.4 and 3.2) we will encounter a more important reason
for using columns, when a distinction will be made between two kinds of
vectors, one written as columns and one as rows. On the other hand, column
vectors are difficult to typeset and use up a lot of paper, so it is quite common
to revert to the row notation when there is no danger of confusion.

Example 1. What is the equation form of the line (∗)?
Solution (Method 1): Solve one of the coordinate equations for the

parameter, and substitute into the other coordinate equation. Since t = 1
2
y,

we have
x = 3

2y − 2,

which can trivially be rearranged into the form (1).
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Before giving a second method for solving this problem, we remark that
if ~r0 in (2) is the zero vector,

~0 ≡
(

0
0

)
,

then the line passes through the origin in R2. (On the other hand, if ~r0 6= ~0,
the line may pass through the origin anyhow. See Exercise 1.2.11.) In this
case the equation form is

0 = ax + by = ~a · ~r.

That is, the vector ~a ≡ (a, b) is perpendicular* to all the vectors ~r making
up the line. In the more general situation (1), the corresponding statement
is that ~a is perpendicular to the vector joining any two points on the line.

Proof: Let ~r1 = (x1, y1) and ~r2 = (x2, y2) be two points on the line.
Then their coordinates satisfy

ax1 + by1 = c, ax2 + by2 = c.

Subtract these two equations to get

a(x1 − x2) + b(y1 − y2) = 0.

That is, ~r1 − ~r2 (the vector with head at ~r1 and tail at ~r2) is perpendicular
to ~a.

On the other hand, in the notation of (2) the difference between two
vectors ~r1 and ~r2 on the line is always a multiple of ~u. Thus ~u is a vector
tangent to the line, and ~u must be perpendicular to ~a. It follows (take the
dot product of equation (2) with ~a) that ~a · ~r = ~a · ~r0, and therefore the c in
(1) equals ~a · ~r0.

Theorem 1: In R2 the vectors
(

a
b

)
and

(
b
−a

)

* The words “perpendicular”, “normal”, and “orthogonal” are all equivalent
when applied to vectors, lines, or planes. (“Orthogonal matrix” means something
else, however, as will be explained in due course.)
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are perpendicular. (One is obtained by rotating the other through a right
angle.)

This is the vectorial version of the familiar theorem, “Two lines are
perpendicular if and only if the product of their slopes is −1.”

Solution to Example 1 (Method 2): Since ~u = (3, 2), a vector
perpendicular to it is ~a = (2,−3).† Then

~a · ~r0 = (2,−3) · (−2, 0) = −4,

so an equation for the line is

2x− 3y = −4.

(This is equivalent to the result of the first method.)

Example 2. Find a parametric representation of the line x + 7y = 2.
Solution: Let y = t. Then x = −7t + 2. So the line is

~r =
(−7t + 2

t

)
= t

(−7
1

)
+

(
2
0

)
.

Note that there are many other correct answers, because our initial step was
rather arbitrary. We could have taken x = t, or y = 2t+5. The result would
have been the same line, but with a different labeling of points by numbers t.

The parametric representation (2) makes sense in space of any dimen-
sion, not just in R2. (The same cannot be said for (1); we return to that
problem later.)

Example 3. Find a parametric form of the line in R3 through the
points (3, 2, 4) and (1, 1,−1).

Solution: The vector difference between the two points, (2, 1, 5), is
parallel to the line and is therefore a suitable ~u. The line passes through
(1, 1,−1), so that is a suitable ~r0 . Therefore, we can write

~r = t(2, 1, 5) + (1, 1,−1),

or
x = 2t + 1, y = t + 1, z = 5t− 1.

† (−2, 3) would do equally well in the role of ~a. But you must use the same ~a
on both sides of the equation ~a ·~r = ~a ·~r0 .
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To check, we see that we recover the two original points by taking t = 1 and
t = 0.

The analogue of (1) for planes in R3 is

ax + by + cz = d. (3)

Planes also have parametric representations (which may be less familiar from
elementary courses than the previous material in this section). Since a plane
is a two-dimensional entity, one needs two independently varying parameters
in order to sweep out all the points on it. It is not hard to guess that the
correct analogue of (2) is

~r = s~u1 + t~u2 + ~r0 , (4)

where ~r0 is a point in the plane, and ~u1 and ~u2 are vectors tangent to the
plane. We will demonstrate this with a sketch and with several examples.
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~r0

~u1

~u2

~u1
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~0

Example 4. Find the parametric form of the plane

x− 3y + z = 0.

Solution: Choose y = s and z = t and solve for x as 3s− t. Then

~r =


 3s− t

s
t


 = s


 3

1
0


 + t


−1

0
1


 .

Example 5. Find the equation form of the plane

~r = s(5, 0,−1) + t(2, 2, 0).
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Solution: By analogy with the previous discussion of lines in R2, it
is clear that the equation must be of the form ~n · ~r = 0, where ~n is a vector
perpendicular to the given ~u1 = (5, 0,−1) and ~u2 = (2, 2, 0). The main
problem is finding such a vector.

Method 1: With the notation of (3) in mind, let ~n = (a, b, c). Write out
the conditions of perpendicularity:

~n · ~u1 = 5a− c = 0, ~n · ~u2 = 2a + 2b = 0.

Since any perpendicular vector will do, we can choose one coordinate arbi-
trarily (but not 0), say c = 5 (to avoid fractions). Then a = 1 and b = −1:

~n = (1,−1, 5).

In other words, the plane is x− y + 5z = 0.
Method 2: The analogue of Theorem 1 for three dimensions is provided

by the vector cross product:

~u× ~v ≡
∣∣∣∣∣∣

ı̂ ̂ k̂
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ ≡

 u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


 .

(The determinant notation here will be explained in Sec. 2.5, in case you are
not familiar with it.) The cross product of two vectors is always perpendic-
ular to both of them. If ~u and ~v are not parallel to each other, then ~u×~v is
not zero. In our plane problem, therefore, ~u1 × ~u2 is suitable for use as ~n.
We calculate

~u1 × ~u2 =

∣∣∣∣∣∣
ı̂ ̂ k̂
5 0 −1
2 2 0

∣∣∣∣∣∣ =


 2
−2
10


 .

This is not the same vector ~n we got with the other method, but that is not
a problem: The two vectors are proportional, and (3) can be multiplied by
any constant (on both sides, of course!) without changing the plane.

Example 6. Find a parametric form of the plane passing through the
points (1, 0, 0), (2, 2, 2), and (−1, 0, 6).

Solution: The difference between any two points on the plane is a
vector parallel to the plane, therefore a suitable candidate for ~u1 or ~u2 . We
arbitrarily choose to subtract the first given vector from each of the other
two:

~u1 = (1, 2, 2), ~u2 = (−2, 0, 6).
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Let us also choose the first vector as ~r0 . Then

~r = s


 1

2
2


 + t


−2

0
6


 +


 1

0
0


 =


 s− 2t + 1

2s
2s + 6t


 .

Example 7. Find the equation form of the plane in the previous ex-
ample.

Solution: Reasoning as we did for lines, we see that the equation is
~n · ~r = d, where ~n is perpendicular to the differences between any points in
the plane (a clumsy vectorial way of saying “perpendicular to the plane”),
and d = ~n ·~r0 for any point ~r0 in the plane. Therefore, it is easy to get these
ingredients from the parametric form found in the previous example. By
either of the methods in Example 5 we find that ~n = (6,−5, 2) is a vector
perpendicular to ~u1 and ~u2 . Using the ~r0 in Example 6, we get ~n · ~r0 = 6.
Thus the equation of the plane is

6x− 5y + 2z = 6.

We summarize the principles used in solving these examples in the fol-
lowing theorem.

Theorem 2: In R3, the parametrized plane (4)

~r = s~u1 + t~u2 + ~r0

consists precisely of all the points satisfying the equation (3)

~n · ~r = d,

where ~n is any nonzero vector perpendicular to ~u1 and ~u2 , and d = ~n · ~r0.
(Here it is understood that ~u1 and ~u2 are not zero and are not parallel to
each other.)

Proof: We must show that the set of points (4) is the same as the set
of points satisfying the equation (3). Therefore, we check that each set is a
subset of the other one.

(i) If ~r is of the form (4), and ~n and d are as described, then taking the
dot product of (4) with ~n indeed yields ~n · ~r = d.

(ii) If ~r1 and ~r2 are two solutions of (3), then ~r1 − ~r2 is perpendicular
to ~n. (The proof of this is the same as that of the corresponding
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statement for lines, given earlier.) Since ~r0 solves (3), it follows that
every solution ~r can be written as

~r = ~r0 + (~r − ~r0) = ~r0 + ~u,

where ~u·~n = 0. As in Example 4, it is easy to see that there will always
be a two-parameter family of vectors ~u satisfying this perpendicularity
condition. Thus the solution space of (3) can be represented in the
form (4) for some ~u1 and ~u2 . It is geometrically obvious that these
can be chosen to be the same ~u1 and ~u2 that we started from; a formal
proof of this requires some concepts that will be developed in later
chapters.

We have shown that (1) and (2) are alternative descriptions of lines in
two-dimensional space, and that (3) and (4) are alternative descriptions of
planes in three-dimensional space. We observed that lines in R3 also have the
parametrical representation (2). It is natural to ask whether a line in three
dimensions has an equation form, analogous to (1) and (3). Since a line has
only one free parameter, it is clear that there must be two conditions relating
the three coordinates of a point on the line. In fact, since the intersection of
two planes is a line (unless the planes are parallel), a line will be defined by
two equations of the type (3). We leave further investigation of this situation
to the exercises.

Exercises

1.2.1 Express in parametric form (~r = t~u + ~r0):

(a) The line through the origin in R3 parallel to the vector (1, 0, 1).

(b) The line in R2 through the points (1, 0) and (0,−1).

(c) The line through (2, 3) parallel to the vector (1, 2).

(d) The line through the points (1, 5, 7) and (2, 10, 14).

1.2.2 Find an equation of the form ax + by = c for these lines in R2.

(a) The line through the points (4, 7) and (2,−1).

(b) The line with parametric equation ~r = t(1, 1) + (4,−1).

(c) The line through the origin parallel to (5, 1).

(d) The line with parametric equation ~r = t(0, 1) + (−2,−1).
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1.2.3 Express in parametric form the plane defined by the equation

9x− 3y + z = 2.

1.2.4 Let ~n = (−1, 0, 2). The equation ~n · ~r = 5 defines a plane in R3.
Express the plane in the parametrized form ~r = s~u1 + t~u2 + ~r0 .

1.2.5 Find an equation (ax + by + cz = d) for:

(a) The plane with parametric form ~r = s(1, 0,−1) + t(2, 1, 2).

(b) The plane through the origin perpendicular to (2, 2, 1).

1.2.6 Find both a parametric form and an equation form for the plane
passing through (1, 0, 0), (1, 1, 1), and the origin.

1.2.7 Express in equation form the plane whose parametric form is

~r = s(1,−1, 2) + t(2, 2, 2) + (5, 0, 2).

1.2.8 Find an equation and a parametric representation for the plane pass-
ing through the points (1, 0, 1), (2, 3, 1), (5, 4, 5).

1.2.9 Find an equation and a parametric representation for the plane per-
pendicular to ~n = (3, 1, 1) and passing through (4, 7,−1).

1.2.10 Prove Theorem 1 (including the statement in parentheses). Hint:

Besides perpendicularity, what does “rotation through a right angle”
entail?

1.2.11 Suppose that the line ~r = t~u + ~r0 passes through the origin, but
nevertheless ~r0 is not ~0. How are ~u and ~r0 related in this situation?

1.2.12 Give an example of a plane ~r = s~u1 + t~u2 +~r0 such that (1) the plane
passes through the origin, and (2) ~r0 is not ~0 and is not parallel to
either ~u1 or ~u2 .

1.2.13 The analogue of Theorem 2 for a line in R2 was not stated formally
as a theorem; you have to search through the expository text to find
all the relevant conclusions. Summarize them formally, in analogy
with Theorem 2.

1.2.14 In the notation of Theorem 2, show that if ~n has length 1, then |d| is
the distance of the plane from the origin.
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1.2.15 The intersection of the planes

x + y + z = 2 and x− 2y + z = 0

is a line in R3. Find a parametric representation of this line. (Sug-

gestion: Set the coordinate z equal to the parameter t.)

1.2.16 Characterize the line ~r = t(1, 0,−1) by a pair of equations, ~n1 · ~r =
0 = ~n2 · ~r. (Find two distinct planes containing the line. There are
many different correct answers!)

1.2.17 Let ~x = (1, 0) and ~y = (2, 1). On a piece of graph paper plot and
label the points t~x + (1− t)~y for t = −0.5, 0, 0.2, 0.5, 0.9, 1, and 1.2.
From this example, formulate a general principle. (What is special
about the points corresponding to 0 ≤ t ≤ 1? These points are called
convex combinations of the two given vectors.)

1.3 Points: A Deeper Look

In the first section of this book we listed various types of physical vec-
tors: forces, velocities, and so on. Conspicuously absent from that list of
vectorial physical quantities was position, the most fundamental of them all.
The reason is that there is a special subtlety to the concept of a position
vector, which would have made it a misleading example then.

At the beginning of the second section it was observed that once the
origin of coordinates is fixed, a point in space (in other words, a possible
value for a position variable) can be associated with a vector with tail at
the origin. The rest of that section, therefore, was written as if points and
vectors are basically the same thing.

Another kind of vector with the same physical units (e.g., meters) as
position is displacement, the difference between two positions. If two parti-
cles are located at positions ~r1 and ~r2 then the second particle is displaced
from the first by the vector ~r2−~r1 . More generally, the vector difference can
be interpreted as the displacement, or relative position, of one geometrical
point relative to another point, even when the points are not occupied by
physical particles. In the parametric equation of a line, ~r = t~u+~r0 , ~u and t~u

are displacement vectors, while ~r0 and ~r are position vectors in the absolute
sense.
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This distinction is not just conceptual; there is a real mathematical dif-
ference between the two kinds of vectors. When we use R3 to model physical
space, the location of the origin is chosen arbitrarily. (Of course, in any par-
ticular application or calculation, some choices may be more convenient or
natural than others.) If the origin is changed, then the position vectors rep-
resenting the points ~r1 and ~r2 change. However, the displacement vector
~r2 − ~r1 stays the same.
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Similarly, vectors of velocity, force, etc. do not depend on the choice of
origin. Vectors of each such type belong to their own space, which is not
the same as the physical space. The origin of velocity space is the condition
of being at rest, which has nothing to do with being located at a particular
point. In fact, in pictorial representations one usually thinks of the origins of
the spaces of possible velocities, forces, etc. of a particle as being located at
the location of the particle concerned, not at the origin of coordinates. That
is, such vectors should be drawn with their tails at the particle (as indicated
in one of the sketches in the next section). This is important for visualizing
the effects of such velocities and forces in generating displacements from that
point (see the next section).

In some books, position vectors are called bound vectors, and vectors
that are independent of the coordinate origin are called free vectors.

The distinction between two types of vectors has implications for the
algebraic operations on vectors. The sum of a position vector and a dis-
placement is a new position vector. The sum of two displacements is another
displacement. But to add two position vectors (or to add two points in space
to each other) is meaningless.

A very similar situation arises in computer programming in connection
with pointers, which label locations in the computer’s memory.* The sketch

* B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice–
Hall, Englewood Cliffs, 1978, Chapter 5.
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shows a model of a computer memory.

1 2 . . . 232 − 1

“A pointer is a variable that contains the address of another variable.” At
one level it is just a number. However, the computer language needs to
make a rigid distinction between pointers and ordinary integers. A pointer
is like a position vector; the difference between two pointers is an integer
(which can be used, for instance, as a subscript of an array) and is like a
displacement vector. It is therefore legal to subtract two pointers (getting
an integer) or to add or subtract an integer from a pointer (getting a new
pointer), but attempting to add two pointers should produce an error mes-
sage. Pointers, and only they, depend on “origin”: The pointers locating
an array (subscripted variable) in memory may change as the program is
revised, or executed under different circumstances, but the integer subscript
that indexes a particular element of the array will stay the same.

Returning to physical vectors, observe that the change of origin is unlike
other changes of coordinates, such as a rotation of axes around the origin, or
a change in the units in which the coordinates are measured from meters to
feet. Coordinate (or basis) changes of the latter type (which will be studied
extensively in Chapter 4) change the numerical representation of a vector
as a string of numbers, but leave the vector itself, as an abstract object,
unchanged (and there is no difference between free and bound vectors in
these respects). The discussion above shows that for points there is another
necessary level of abstraction: The representation of points by vectors is
somewhat arbitrary (depending on the choice of origin), just as the repre-
sentation of physical vectors by n-tuples of numbers is arbitrary (depending
on the direction and scale of the axes).

There are physical situations where the space of possible positions is not
“flat” (such as the space-time of general relativity, or the space of possible
orientations of a rigid body). In such cases the points cannot be regarded as
vectors at all. Nevertheless, velocities (more generally, tangents to curves —
see the next section) are still correctly modeled by vectors. This is part of
the subject called differential geometry, for which the material in this book
is an important prerequisite.
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Length and distance

This is a good opportunity to review some elementary terminology and
notation that didn’t make their way into the previous sections.

Numbers (real or complex) are called scalars when it is desired to dis-
tinguish them from vectors. (This terminology carries over to functions that
take scalar or vector values, respectively.) The operation of multiplying a
vector by a number is called scalar multiplication to distinguish it from other
kinds of multiplication involving vectors (such as the dot and cross products).

In the spaces Rn and the spaces of physical quantities modeled by them,
each vector has a length defined by

‖~v‖ =
√

~v · ~v =

√√√√ n∑
j=1

|vj |2 .

(The notation |~v| is also used.) This scalar tells the “size” of the vector,
discarding the directional information.

The distance between two vectors, ~u and ~v, is the length of their differ-
ence vector, ‖~u−~v‖. When the two vectors represent points, their difference
is a displacement vector and hence the distance is independent of the choice
of origin.

Exercises

1.3.1 Which of the following operations make sense, and which kind of
vector is the result in each case?

(a) Subtraction of one position vector from another.

(b) Subtraction of a displacement vector from a position vector.

(c) Subtraction of one displacement vector from another.

(d) Subtraction of a position vector from a displacement vector.

1.3.2 Let ~r1 = 2ı̂+ ̂−3k̂, ~r2 = ı̂+ ̂+ k̂. Calculate ‖~r1‖, ‖~r2‖, and ‖~r2−~r1‖.
(Remember that 2ı̂ + ̂− 3k̂ means the same thing as (2, 1,−3).)
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1.3.3 Redefine coordinates in R3 by

x′ = x− 1, y′ = y + 2, z′ = z.

Calculate the primed coordinates of the vectors ~r1 and ~r2 of the pre-
vious exercise, and verify that ~r2−~r1 and ‖~r2−~r1‖ are the same when
calculated in the primed coordinates as in the original coordinates,
although the numerical values of ‖~r1‖ and ‖~r2‖ change.

1.4 Curves and Tangent Vectors

Vectors are associated not only with straight lines but also with curved
lines. A curve can be described by a vector-valued function of a real variable,

f :R→ Rp.

Or, to look at the situation from the other way around, a function from
R into Rp can be represented geometrically by a curve. (The notation
f :R→ Rp means that f is a function that takes elements of R as input and
yields elements of Rp as output.)

In fact, there are two different ways in which we can visualize such a
function as a curve.

1. We can graph the function in a space of dimension p+1. For example,
if p = 2 and

~f(t) =
(

x
y

)
, where x = cos t, y = sin t,

then (for a certain orientation of the axes) the graph looks like this:
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This graph is a helix. With modern computer software it is not hard to
produce a genuinely three-dimensional image of the curve, which can
be rotated on the computer screen to reveal the curve’s geometrical
nature more clearly than a single two-dimensional projection on the
printed page can do. But if we insist on visualizing functions this way
as p increases, we will quickly run out of dimensions.

2. We can represent the function as a parametrized curve in p-dimen-
sional space. That is, for each value of the independent variable, t,
we plot the point ~f(t) in Rp. For the previous example the curve is
a circle:
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We can think of each point as being labeled by the value of t that
maps into it, but note that there could be more than one such value.
A 3-dimensional example is

~g(t) =


x

y
z


 , where x = cos t, y = sin t, z = t.

The curve in this case is the same helix as before, with the t-axis
relabeled as z-axis. Only its interpretation has changed, and it is
important to understand the conceptual difference. In one case there
are 3 variables, in the other there are 4 (three dependent and one
independent).

We can define the derivative of a vector-valued function by taking the
ordinary derivative of each of its coordinates:

~f ′(t) =




f ′1(t)
f ′2(t)

...
f ′p(t)


 .
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(A more profound definition will come later.) For our circle,

~f ′(t) =




dx

dt
dy

dt


 =

(− sin t
cos t

)
.

If t has the interpretation of time and ~r = ~f(t) that of position, then
~f ′(t) is the velocity at time t. A geometrical interpretation of ~f ′ is as a
tangent vector to the parametrized curve, with length proportional to the
“speed” at which the curve is traced out by the given parametrization. Cus-
tomarily one thinks of the vector ~f ′(t0) as being attached to the correspond-
ing point, ~r0 ≡ ~f(t0), on the curve; see the sketch of the circle above. (Note
that this point then becomes the origin as far as addition, etc., of vectors
of this sort is concerned.) Just as the derivative of an ordinary real-valued
function is used to construct the tangent line to the graph of the function,
the parametric equation of the tangent line to the graph of ~f at t0 is

~r = ~f(t0) + (t− t0)~f ′(t0). (1)

This line in Rp+1 can be thought of as the “best straight-line approximation”
to the graph in the small neighborhood near (t0, ~r0). One can also think of
(1) as a parametric equation of a line in Rp (through the point ~f(t0), along
the tangent vector ~f ′(t0)); this is the tangent line to the parametrized curve.

The numerical significance of the tangent vector is this: When ~f ′(t0)
is multiplied by a small number dt ≡ t − t0, the result is a vector d~r that
tells approximately how ~f(t) is displaced from ~r0 . This is an approximation
because the curve is being approximated by its tangent line at ~r0 (or, because
the graph of ~f is being approximated by its tangent line at (t0, ~r0)).

If ~f ′(t0) happens to be the zero vector, then (1) does not define a line.
However, it is still true that (1) tells approximately how ~f(t) changes as t

moves slightly away from t0. (That is, ~f(t) is approximately constant in
that case!) The fact that (1) is not a line does not necessarily mean that the
curve, as a geometrical object in Rp, does not have a tangent line at that
point; see Exercises 1.4.4 and 1.4.5.

Later we will see how to generalize all these considerations when the
independent variable of the function is also multidimensional (see Secs. 2.4
and 3.3–5). A different kind of generalization is to functions whose values
~f(t) lie not in Rp but in some more general space of vectors, such as those
in Examples 1, 3, and 4 of Section 1.1. We’ll return to this topic in Sec. 6.3
after building up enough background concepts.
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Exercises

1.4.1 Calculate the derivative ~g ′(t) for the helical curve in the text. Use it
to find a parametric representation for the tangent line to the curve
at the point where t = π

3 .

1.4.2 Construct the tangent line at t = π
3

to the circular curve in the text
(x = cos t, y = sin t). What is the relationship between this line and
the one in the previous exercise?

1.4.3 A particle is forced to move along the trajectory ~h(t) = (t2, 1+3t, e2t).
At time t = 2 the particle is released from the curved track, and
therefore moves off along the tangent line at the constant velocity
~h′(2). Where is the particle at time t = 3?

1.4.4 Consider the curve β(t) = (t5, t3) in R2.

(a) Show that at the point where t = 0, the equations of this section
define a tangent vector but not a tangent line.

(b) Find a reparametrization of the curve (define a new variable τ =
ρ(t) via some increasing function ρ) that enables the tangent line
at the origin to be constructed in the usual way.

1.4.5 Consider the curve β(t) = (t2, t3) in R2.

(a) Show that at the point where t = 0, the equations of this section
define a tangent vector but not a tangent line.

(b) Show that this curve does not have a tangent line at the origin.

1.4.6 Consider the differential equation
d2y

dt2
+ ω2y = 0, where ω is a pa-

rameter (independent of t), with initial data y(0) = 1, y′(0) = −2.

(a) Find the solution, y(t). (Assume that ω is real and positive.)
As ω varies, the solution moves along a curve in an infinite-
dimensional space of functions. (Think of each function y(t) as
a single point on this curve. Keep in mind that the parameter
along the curve is ω, not t.)

(b) Find the derivative of the solution with respect to ω at ω = 2.
This function plays the role of tangent vector to the curve of
solutions.
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(c) Use the result of (b) to construct an approximation to the func-
tion y when ω = 2.15. This is a point on the tangent line to the
curve of solutions at the point labeled by ω = 2.

(d) Appraise the accuracy of the approximation you got in (c). (You
can use a computer or a graphing calculator to plot the exact and
approximate solutions as functions of t.) Notice the difference
between what happens at small |t| and at large |t|.


