Test C - Solutions (corrected)

Calculators may be used for simple arithmetic operations only!

1. (30 pts.) Let $\vec{F}=(x-y) \hat{\imath}+z \hat{\jmath}+(z-y) \vec{k}$.
(a) Calculate $\nabla \cdot \vec{F}$.

$$
\frac{\partial(x-y)}{\partial x}+\frac{\partial z}{\partial y}+\frac{\partial(z-y)}{\partial z}=1+0+1=2 .
$$

(b) Calculate $\nabla \times \vec{F}$.

$$
\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
(x-y) & z & (z-y)
\end{array}\right|=\hat{\imath}(-1-1)+\hat{\jmath}(0-0)+\hat{k}(0+1)=-2 \hat{\imath}+\hat{k} .
$$

(c) Calculate $\iint_{R} \vec{F} \cdot d \vec{S}$ when R is the portion of the plane $z=2-5 x$ that lies in the quadrant $z>0, x>0$ and between the planes $y=0$ and $y=1$.
Note first that the equation of the surface can also be written as

$$
x=\frac{2-z}{5},
$$

and that when $x=0, z=2$, and when $z=0, x=\frac{2}{5}$. Thus the integration will be from 0 to 2 in z or from 0 to $\frac{2}{5}$ in x. Now let's write the integral as

$$
\iint\left[F_{x} d y d z+F_{y} d z d x+F_{z} d x d y\right]
$$

and ponder how best to integrate each term.
Method 1: Integrate each term over its own plane. The projection onto the $x-z$ plane has zero area, so the F_{y} term is zero. The others are

$$
\begin{gathered}
\int_{0}^{1} d y \int_{0}^{2} d z(x-y)+\int_{0}^{1} d y \int_{0}^{2 / 5} d x(z-y)=\int_{0}^{1} d y \int_{0}^{2} d z\left(\frac{2-z}{5}-y\right)+\int_{0}^{1} d y \int_{0}^{2 / 5} d x(2-5 x-y) \\
=\int_{0}^{2} d z\left[\frac{2-z}{5} y-\frac{y^{2}}{2}\right]_{0}^{1}+\int_{0}^{1} d y\left[2 x-\frac{5 x^{2}}{2}-y x\right]_{0}^{\frac{2}{5}}=\int_{0}^{2} d z\left[\frac{2-z}{5}-\frac{1}{2}\right]+\int_{0}^{1} d y\left[\frac{4}{5}-\frac{2}{5}-\frac{2 y}{5}\right] \\
=\left[-\frac{z}{10}-\frac{z^{2}}{10}\right]_{0}^{2}+\left[\frac{2 y}{5}-\frac{y^{2}}{5}\right]_{0}^{1}=-\frac{1}{5}-\frac{2}{5}+\frac{2}{5}-\frac{1}{5}=-\frac{2}{5}
\end{gathered}
$$

Method 2: Integrate everything over x and y. We have $d z=-5 d x+0 d y$. Therefore, the integral is

$$
\begin{gathered}
\iint_{D}\left[(x-y) d y(-5 d x)+F_{y}(d x)^{2}+(z-y) d x d y\right]=\int_{0}^{1} d y \int_{0}^{2 / 5} d x[+5(x-y)+(2-5 x-y)] \\
=\int_{0}^{1} d y \int_{0}^{2 / 5} d x[5 x-5 y+2-5 x-y]=\int_{0}^{1} d y \int_{0}^{2 / 5} d x[-6 y+2] \\
=\int_{0}^{2 / 5} d x\left[-3 y^{2}+2 y\right]_{0}^{1}=\frac{2}{5}(-3+2)=-\frac{2}{5}
\end{gathered}
$$

(d) Calculate $\iint_{S} \vec{F} \cdot d \vec{S}$ when S is the sphere $(x-1)^{2}+y^{2}+(z+2)^{2}=25$.

By Gauss's theorem, this is the integral of $\nabla \cdot \vec{F}$ over the ball whose boundary is S. Since $\nabla \cdot \vec{F}=2$, this is just twice the volume of the ball. Since the radius is 5 , this is

$$
2 \cdot \frac{4 \pi}{3} \cdot 5^{3}=\frac{8 \pi}{3} \cdot 125=\frac{1000 \pi}{3}
$$

2. (10 pts.) Find the volume of the parallelepiped generated by the edges

$$
\vec{v}_{1}=(1,2,1), \quad \vec{v}_{2}=(2,0,2), \quad \vec{v}_{3}=(1,2,3) .
$$

$$
\left|\begin{array}{lll}
1 & 2 & 1 \\
2 & 0 & 2 \\
1 & 2 & 3
\end{array}\right|=-2\left|\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right|-2\left|\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right|=-2(6-2)-0=-8
$$

So the volume is +8 .
3. (30 pts.) Define curvilinear coordinates (u, t) by $\left\{\begin{array}{l}x=e^{u} \cosh t, \\ y=e^{u} \sinh t .\end{array}\right.$
(a) Find the formulas for the tangent vectors to the coordinate curves (at a generic point $(u, t))$.

$$
\frac{\partial \vec{r}}{\partial u}=\binom{e^{u} \cosh t}{e^{u} \sinh t}, \quad \frac{\partial \vec{r}}{\partial t}=\binom{e^{u} \sinh t}{e^{u} \cosh t} .
$$

For future use, let us put these together (as columns) into the Jacobian matrix,

$$
J=\left(\begin{array}{ll}
e^{u} & \cosh t \\
e^{u} \sinh t \\
e^{u} \sinh t & e^{u} \cosh t
\end{array}\right)
$$

(b) Find the formulas for the normal vectors to the coordinate "surfaces" (which are actually curves in this two-dimensional case).
These are the rows of J^{-1}. So we start with

$$
\operatorname{det} J=\left|\begin{array}{cc}
e^{u} & \cosh t \\
e^{u} & e^{u} \sinh t \\
e^{u} \sinh t & e^{u} \\
\cosh t
\end{array}\right|=e^{2 u}\left(\cosh ^{2} t-\sinh ^{2} t\right)=e^{2 u} .
$$

Therefore, by Cramer's rule,

$$
J^{-1}=e^{-2 u}\left|\begin{array}{cc}
e^{u} \cosh t & -e^{u} \sinh t \\
-e^{u} \sinh t & e^{u} \cosh t
\end{array}\right|
$$

Thus

$$
\nabla u=\left(e^{-u} \cosh t,-e^{-u} \sinh t\right), \quad \nabla t=\left(-e^{-u} \sinh t, e^{-u} \cosh t\right) .
$$

It is easy to check that these have the reciprocal orthonormality properties that they ought to have:

$$
\left\langle\frac{\partial \vec{r}}{\partial u}, \nabla u\right\rangle=1, \quad\left\langle\frac{\partial \vec{r}}{\partial u}, \nabla t\right\rangle=0, \quad\left\langle\frac{\partial \vec{r}}{\partial t}, \nabla u\right\rangle=0, \quad\left\langle\frac{\partial \vec{r}}{\partial t}, \nabla t\right\rangle=1 .
$$

(c) Calculate $\iint_{D} x y^{2} d x d y$ when D is the region bounded by the curves $u=0, u=2$, $t=0, t=1$.

$$
\begin{aligned}
& \int_{0}^{2} d u \int_{0}^{1} d t x y^{2} J=\int_{0}^{2} d u \int_{0}^{1} d t e^{5 u} \cosh t \sinh ^{2} t \\
& \quad=\left.\left.\frac{1}{5} e^{5 u}\right|_{0} ^{2} \frac{1}{3} \sinh ^{3} t\right|_{0} ^{1}=\frac{1}{15}\left(e^{10}-1\right) \sinh ^{3} 1
\end{aligned}
$$

4. (15 pts.) Tell whether each of these formulas defines an inner product on the space $\mathcal{C}(0,5)$ (the real-valued continuous functions of t, where $0<t<5$). If not, briefly explain why not.
(a) $\langle f, g\rangle=\int_{0}^{5} f(t)^{2} g(t)^{2} d t$

NO - not bilinear.
(b) $\langle f, g\rangle=\int_{0}^{5} \frac{f(t) g(t)}{1+t^{2}} d t$

YES.
(c) $\langle f, g\rangle=\int_{0}^{\pi / 2} f(t) g(t) d t$

NO - not positive definite: If $f(t)=0$ for $t<\frac{\pi}{2}$ (but f is not zero everywhere in the interval from $\frac{\pi}{2}$ to 5), then $\langle f, f\rangle=0$ although f is not the zero vector!
5. (15 pts.) Find an orthonormal basis for \mathbf{R}^{3} whose first element is $\hat{u}_{1}=\frac{1}{\sqrt{6}}(1,1,2)$.

Note that \hat{u}_{1} has norm one, so we can put it into the basis unchanged. We continue by the Gram-Schmidt procedure. Choose any vector linearly independent of \hat{u}_{1} to be \vec{v}_{2}; for example, $\vec{v}_{2}=(1,0,0)$. Its projection onto \hat{u}_{1} is

$$
\vec{v}_{\|}=\left(\hat{u}_{1} \cdot \vec{v}_{2}\right) \hat{u}_{1}=\frac{1}{6}(1+0+0)(1,1,2)=\frac{1}{6}(1,1,2) .
$$

So the perpendicular part is

$$
\vec{v}_{\perp}=(1,0,0)-\frac{1}{6}(1,1,2)=\frac{1}{6}(5,-1,-2) .
$$

Since $\sqrt{25+1+4}=\sqrt{30}$, the normalized vector in this direction is

$$
\hat{u}_{2}=\frac{1}{\sqrt{30}}(5,-1,-2) .
$$

Now we need to find a unit vector perpendicular to the two we've found so far.
Method 1: $\hat{u}_{3} \equiv \hat{u}_{1} \times \hat{u}_{2}=$

$$
\frac{1}{\sqrt{6 \cdot 30}}\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 1 & 2 \\
5 & -1 & -2
\end{array}\right|=\frac{1}{6 \sqrt{5}}(0 \hat{\imath}+12 \hat{\jmath}-6 \hat{k})=\frac{1}{\sqrt{5}}(0,2,-1) .
$$

Method 2: Let $\vec{v}_{3}=(0,1,0)$. Its projection onto the plane of the first two vectors is

$$
\vec{v}_{\|}=\left(\hat{u}_{1} \cdot \vec{v}_{3}\right) \hat{u}_{1}+\left(\hat{u}_{2} \cdot \vec{v}_{3}\right) \hat{u}_{2}=\frac{1}{6}(1,1,2)+\frac{-1}{30}(5,-1,-2) .
$$

So

$$
\vec{v}_{\perp}=\left(-\frac{1}{6}+\frac{5}{30}, 1-\frac{1}{6}-\frac{1}{30},-\frac{2}{6}-\frac{2}{30}\right)=\left(0, \frac{4}{5},-\frac{2}{5}\right),
$$

which normalizes to the same \hat{u}_{3} as before.

