Green Functions: Matrices for Infinite-Dimensional Operators

I. PRELIMINARY REMARKS

The point of this lecture is to show how certain ideas and facts of finite-dimensional linear algebra partly persist into function spaces (and partly don't).

Typical vector spaces of functions are $\mathcal{C}^n(0,\pi)$. We have seen

(a) Differential operators: E.g.,

$$L = \frac{d^2}{dx^2} + 3, \qquad L: \mathcal{C}^2(0,\pi) \to \mathcal{C}^0(0,\pi).$$

Note: This notation means Ly = y'' + 3y, not y'' + 3.

(b) Integral operators: For a suitable function G,

$$Gy(x) = \int_0^{\pi} G(x,t)f(t) dt, \qquad G: \mathcal{C}^0(0,\pi) \to \mathcal{C}^0(0,\pi).$$

This lecture focuses on the following ...

Example: Let ω be a positive real number, *not* an integer. Define

$$G_{\omega}(x,t) = \frac{\sin(\omega x_{<})\sin(\omega(x_{>}-\pi))}{\omega\sin(\omega\pi)},$$

where $x_{\leq} = \min(x, t), x_{\geq} = \max(x, t)$. (It turns out that $G: \mathcal{C}^0(0, \pi) \to \mathcal{C}^2(0, \pi)$ in this case.)

Remark: G(x,t) is like a matrix for the operator G. But there is no function that can act as a matrix for L (or for $I: \mathcal{C}^0 \to \mathcal{C}^0$). Unfortunately, the official terminology for the function G(x,t) is: the integral kernel of the operator G.

II. The main claim: G is the inverse of L

For $\omega > 0$ and not integer, define

$$L = \frac{d^2}{dx^2} + \omega^2.$$

Since solutions of differential equations are not unique until initial or boundary data are imposed, in order for L to have an inverse (and still be a *linear* operator) we need to restrict its domain to build in enough homogeneous boundary data: Let

$$\mathcal{D} = \{ y \in \mathcal{C}^2 : y(0) = 0 = y(\pi) \}$$

and henceforth consider L with \mathcal{D} as domain.

Proposition: G is the inverse of L:

$$Ly = f \iff y = Gf.$$

Verification: We have to show that

$$y(x) = \int_0^{\pi} G_{\omega}(x,t) f(t) \, dt$$

satisfies the differential equation $y'' + \omega^2 y = f$ and the boundary conditions $y(0) = 0 = y(\pi)$. The definition of G_{ω} gives

$$y(x) = \int_0^x \frac{\sin(\omega t)\sin(\omega(x-\pi))}{\omega\sin(\omega\pi)} f(t) dt + \int_x^\pi \frac{\sin(\omega x)\sin(\omega(t-\pi))}{\omega\sin(\omega\pi)} f(t) dt,$$

from which it is easy to see that the boundary conditions are satisfied.

Differentiate to get

$$y'(x) = \frac{\sin(\omega x)\sin(\omega(x-\pi))}{\omega\sin(\omega\pi)}f(x) - \frac{\sin(\omega x)\sin(\omega(x-\pi))}{\omega\sin(\omega\pi)}f(x) + \int_0^x \frac{\sin(\omega t)\cos(\omega(x-\pi))}{\sin(\omega\pi)}f(t)\,dt + \int_x^\pi \frac{\cos(\omega x)\sin(\omega(t-\pi))}{\sin(\omega\pi)}f(t)\,dt,$$

and the first two terms cancel. Therefore,

$$y''(x) = \frac{\sin(\omega x)\cos(\omega(x-\pi))}{\omega\sin(\omega\pi)}f(x) - \frac{\cos(\omega x)\sin(\omega(x-\pi))}{\omega\sin(\omega\pi)}f(x) - \omega\int_0^x \frac{\sin(\omega t)\sin(\omega(x-\pi))}{\sin(\omega\pi)}f(t)\,dt - \omega\int_x^\pi \frac{\sin(\omega x)\sin(\omega(t-\pi))}{\sin(\omega\pi)}f(t)\,dt.$$

This time the second two terms are precisely $-\omega^2 y(x)$. Combining the first two terms by a trig identity, we get

$$y''(x) + \omega^2 y(x) = \frac{\sin(\omega x - \omega x + \omega \pi)}{\sin(\omega \pi)} f(x)$$
$$= f(x).$$

This calculation has verified that LG = I on the domain $\mathcal{C}(0,\pi)$ (i.e., $f \xrightarrow{G} y \xrightarrow{L} f$). To show that GL = I on the domain $\mathcal{C}^2(0,\pi)$ (i.e., $y \xrightarrow{L} f \xrightarrow{G} y$) we need to appeal to the uniqueness theorem for solutions of ordinary differential equations.

III. UNIQUENESS — OR THE LACK THEREOF

First consider a square matrix M. If $\lambda \in \mathbf{R}$, the notation $M - \lambda$ means the same thing as $M - \lambda I$. The inverse $(M - \lambda)^{-1}$ exists if (and only if) $\det(M - \lambda) \neq 0$. In that case the nonhomogeneous linear equation $(M - \lambda)\vec{v} = \vec{b}$ has exactly one solution for each \vec{b} :

$$\vec{v} = (M - \lambda)^{-1}\vec{b}.$$

If $\det(M - \lambda) = 0$ (which happens for a finite list of roots of the polynomial), then there is a vector \vec{v}_0 such that $M\vec{v}_0 = \lambda\vec{v}_0$ (called an *eigenvector*). In that case $(M - \lambda)\vec{v} = \vec{b}$ has infinitely many solutions if it has any at all, because to any particular solution we could add any multiple of \vec{v}_0 . Our big point is that much the same thing happens with the operator L.

Proposition:

- (a) If ω is a nonzero integer, then $y'' + \omega^2 y = f$ has many solutions satisfying $y(0) = 0 = y(\pi)$ if it has any such solutions at all.
- (b) If ω is not a nonzero integer, then this boundary-value problem has at most one solution. (Then our previous proposition shows that there is exactly one, and hence GL = I.)

Proof:

- (a) There is an eigenvector: $y_0(x) = \sin(\omega x)$ satisfies $y'' + \omega^2 y = 0$, $y(0) = 0 = y(\pi)$.
- (b) If y_1 and y_2 are solutions, then $y = y_1 y_2$ must satisfy $y'' + \omega^2 y = 0$, $y(0) = 0 = y(\pi)$. The only solutions of the ODE and the first boundary condition are $y(x) = C \sin(\omega x)$, but then the second boundary condition, $C \sin(\omega \pi) = 0$, can't be satisfied unless C = 0; so y_1 and y_2 are the same.

IV. EXISTENCE — OR THE LACK THEREOF

We still have a loose end to tie up in the case that ω^2 is an eigenvalue.

Proposition: When ω is a nonzero integer:

- (a) If $\int_0^{\pi} f(x) \sin(\omega x) dx = 0$, then a solution of the boundary-value problem exists (but isn't unique).
- (b) If $\int_0^{\pi} f(x) \sin(\omega x) dx \neq 0$, then no solution exists (satisfying both boundary conditions as well as the ODE).

Compare the situation with a symmetric matrix M. (Note: $G_{\omega}(t,x) = G_{\omega}(x,t)$, which is the analog of the symmetry of $(M - \lambda)^{-1}$.) In general, $\ker(M - \lambda)$ comprises the vectors orthogonal (perpendicular) to all the rows of $M - \lambda$. When M is symmetric, that's the same as the rows orthogonal to all the columns of $M - \lambda$ — i.e., orthogonal to the range of $M - \lambda$. In other words: If $(M - \lambda)\vec{v}_0 = 0$, and if $(M - \lambda)\vec{v} = \vec{b}$ has any solutions \vec{v} , then \vec{b} is orthogonal to \vec{v}_0 (and conversely). The condition in our proposition states that f is "perpendicular" to the eigenvector $\sin(\omega x)$. Sketch of proof of proposition: Solve the ODE $y'' + \omega^2 y = f$ by variation of parameters:

$$y(x) = B(x)\sin(\omega x) + A(x)\cos(\omega x).$$

You get solvable first-order differential equations for A and B. The solution involves two arbitrary constants of integration, A_0 and B_0 , which ought to to be found by imposing the boundary conditions $y(0) = 0 = y(\pi)$. That results in a 2 × 2 linear system to be solved for A_0 and B_0 .

- (a) If ω is not a nonzero integer, the system is nonsingular (the solution is unique) and you discover the formula for the Green function (which I pulled out of a hat earlier).
- (b) If ω is a nonzero integer, the algebraic system is singular (rank 1); it is *inconsistent* if the orthogonality integral is not zero, and it has nonunique solutions if the integral is zero.