Green Functions: Matrices for Infinite-Dimensional Operators

I. Preliminary Remarks

The point of this lecture is to show how certain ideas and facts of finite-dimensional linear algebra partly persist into function spaces (and partly don't).

Typical vector spaces of functions are $\mathcal{C}^{n}(0, \pi)$. We have seen
(a) Differential operators: E.g.,

$$
L=\frac{d^{2}}{d x^{2}}+3, \quad L: \mathcal{C}^{2}(0, \pi) \rightarrow \mathcal{C}^{0}(0, \pi)
$$

Note: This notation means $L y=y^{\prime \prime}+3 y$, not $y^{\prime \prime}+3$.
(b) Integral operators: For a suitable function G,

$$
G y(x)=\int_{0}^{\pi} G(x, t) f(t) d t, \quad G: \mathcal{C}^{0}(0, \pi) \rightarrow \mathcal{C}^{0}(0, \pi)
$$

This lecture focuses on the following ...
Example: Let ω be a positive real number, not an integer. Define

$$
G_{\omega}(x, t)=\frac{\sin \left(\omega x_{<}\right) \sin \left(\omega\left(x_{>}-\pi\right)\right)}{\omega \sin (\omega \pi)},
$$

where $x_{<}=\min (x, t), x_{>}=\max (x, t)$. (It turns out that $G: \mathcal{C}^{0}(0, \pi) \rightarrow \mathcal{C}^{2}(0, \pi)$ in this case.)

Remark: $G(x, t)$ is like a matrix for the operator G. But there is no function that can act as a matrix for L (or for $I: \mathcal{C}^{0} \rightarrow \mathcal{C}^{0}$). Unfortunately, the official terminology for the function $G(x, t)$ is: the integral kernel of the operator G.

II. The main claim: G is the inverse of L

For $\omega>0$ and not integer, define

$$
L=\frac{d^{2}}{d x^{2}}+\omega^{2} .
$$

Since solutions of differential equations are not unique until initial or boundary data are imposed, in order for L to have an inverse (and still be a linear operator) we need to restrict its domain to build in enough homogeneous boundary data: Let

$$
\mathcal{D}=\left\{y \in \mathcal{C}^{2}: y(0)=0=y(\pi)\right\}
$$

and henceforth consider L with \mathcal{D} as domain.
Proposition: G is the inverse of L :

$$
L y=f \Longleftrightarrow y=G f
$$

Verification: We have to show that

$$
y(x)=\int_{0}^{\pi} G_{\omega}(x, t) f(t) d t
$$

satisfies the differential equation $y^{\prime \prime}+\omega^{2} y=f$ and the boundary conditions $y(0)=0=$ $y(\pi)$. The definition of G_{ω} gives

$$
y(x)=\int_{0}^{x} \frac{\sin (\omega t) \sin (\omega(x-\pi))}{\omega \sin (\omega \pi)} f(t) d t+\int_{x}^{\pi} \frac{\sin (\omega x) \sin (\omega(t-\pi))}{\omega \sin (\omega \pi)} f(t) d t
$$

from which it is easy to see that the boundary conditions are satisfied.
Differentiate to get

$$
\begin{aligned}
y^{\prime}(x) & =\frac{\sin (\omega x) \sin (\omega(x-\pi))}{\omega \sin (\omega \pi)} f(x)-\frac{\sin (\omega x) \sin (\omega(x-\pi))}{\omega \sin (\omega \pi)} f(x) \\
& +\int_{0}^{x} \frac{\sin (\omega t) \cos (\omega(x-\pi))}{\sin (\omega \pi)} f(t) d t+\int_{x}^{\pi} \frac{\cos (\omega x) \sin (\omega(t-\pi))}{\sin (\omega \pi)} f(t) d t
\end{aligned}
$$

and the first two terms cancel. Therefore,

$$
\begin{aligned}
y^{\prime \prime}(x) & =\frac{\sin (\omega x) \cos (\omega(x-\pi))}{\omega \sin (\omega \pi)} f(x)-\frac{\cos (\omega x) \sin (\omega(x-\pi))}{\omega \sin (\omega \pi)} f(x) \\
& -\omega \int_{0}^{x} \frac{\sin (\omega t) \sin (\omega(x-\pi))}{\sin (\omega \pi)} f(t) d t-\omega \int_{x}^{\pi} \frac{\sin (\omega x) \sin (\omega(t-\pi))}{\sin (\omega \pi)} f(t) d t .
\end{aligned}
$$

This time the second two terms are precisely $-\omega^{2} y(x)$. Combining the first two terms by a trig identity, we get

$$
\begin{aligned}
y^{\prime \prime}(x)+\omega^{2} y(x) & =\frac{\sin (\omega x-\omega x+\omega \pi)}{\sin (\omega \pi)} f(x) \\
& =f(x)
\end{aligned}
$$

This calculation has verified that $L G=I$ on the domain $\mathcal{C}(0, \pi)$ (i.e., $f \xrightarrow{G} y \xrightarrow{L} f$). To show that $G L=I$ on the domain $\mathcal{C}^{2}(0, \pi)$ (i.e., $y \xrightarrow{L} f \xrightarrow{G} y$) we need to appeal to the uniqueness theorem for solutions of ordinary differential equations.

III. Uniqueness - or the Lack thereof

First consider a square matrix M. If $\lambda \in \mathbf{R}$, the notation $M-\lambda$ means the same thing as $M-\lambda I$. The inverse $(M-\lambda)^{-1}$ exists if (and only if) $\operatorname{det}(M-\lambda) \neq 0$. In that case the nonhomogeneous linear equation $(M-\lambda) \vec{v}=\vec{b}$ has exactly one solution for each \vec{b} :

$$
\vec{v}=(M-\lambda)^{-1} \vec{b} .
$$

If $\operatorname{det}(M-\lambda)=0$ (which happens for a finite list of roots of the polynomial), then there is a vector \vec{v}_{0} such that $M \vec{v}_{0}=\lambda \vec{v}_{0}$ (called an eigenvector). In that case $(M-\lambda) \vec{v}=\vec{b}$ has infinitely many solutions if it has any at all, because to any particular solution we could add any multiple of \vec{v}_{0}. Our big point is that much the same thing happens with the operator L.

Proposition:

(a) If ω is a nonzero integer, then $y^{\prime \prime}+\omega^{2} y=f$ has many solutions satisfying $y(0)=0=$ $y(\pi)$ if it has any such solutions at all.
(b) If ω is not a nonzero integer, then this boundary-value problem has at most one solution. (Then our previous proposition shows that there is exactly one, and hence $G L=I$.)
Proof:
(a) There is an eigenvector: $y_{0}(x)=\sin (\omega x)$ satisfies $y^{\prime \prime}+\omega^{2} y=0, y(0)=0=y(\pi)$.
(b) If y_{1} and y_{2} are solutions, then $y=y_{1}-y_{2}$ must satisfy $y^{\prime \prime}+\omega^{2} y=0, y(0)=0=y(\pi)$. The only solutions of the ODE and the first boundary condition are $y(x)=C \sin (\omega x)$, but then the second boundary condition, $C \sin (\omega \pi)=0$, can't be satisfied unless $C=0$; so y_{1} and y_{2} are the same.

IV. Existence - or the lack thereof

We still have a loose end to tie up in the case that ω^{2} is an eigenvalue.
Proposition: When ω is a nonzero integer:
(a) If $\int_{0}^{\pi} f(x) \sin (\omega x) d x=0$, then a solution of the boundary-value problem exists (but isn't unique).
(b) If $\int_{0}^{\pi} f(x) \sin (\omega x) d x \neq 0$, then no solution exists (satisfying both boundary conditions as well as the ODE).
Compare the situation with a symmetric matrix M. (Note: $G_{\omega}(t, x)=G_{\omega}(x, t)$, which is the analog of the symmetry of $(M-\lambda)^{-1}$.) In general, $\operatorname{ker}(M-\lambda)$ comprises the vectors orthogonal (perpendicular) to all the rows of $M-\lambda$. When M is symmetric, that's the same as the rows orthogonal to all the columns of $M-\lambda-$ i.e., orthogonal to the range of $M-\lambda$. In other words: If $(M-\lambda) \vec{v}_{0}=0$, and if $(M-\lambda) \vec{v}=\vec{b}$ has any solutions \vec{v}, then \vec{b} is orthogonal to \vec{v}_{0} (and conversely). The condition in our proposition states that f is "perpendicular" to the eigenvector $\sin (\omega x)$.

Sketch of proof of proposition: Solve the ODE $y^{\prime \prime}+\omega^{2} y=f$ by variation of parameters:

$$
y(x)=B(x) \sin (\omega x)+A(x) \cos (\omega x) .
$$

You get solvable first-order differential equations for A and B. The solution involves two arbitrary constants of integration, A_{0} and B_{0}, which ought to to be found by imposing the boundary conditions $y(0)=0=y(\pi)$. That results in a 2×2 linear system to be solved for A_{0} and B_{0}.
(a) If ω is not a nonzero integer, the system is nonsingular (the solution is unique) and you discover the formula for the Green function (which I pulled out of a hat earlier).
(b) If ω is a nonzero integer, the algebraic system is singular (rank 1); it is inconsistent if the orthogonality integral is not zero, and it has nonunique solutions if the integral is zero.

