
Green Functions: Matrices for Infinite-Dimensional Operators

I. Preliminary remarks

The point of this lecture is to show how certain ideas and facts of finite-dimensional
linear algebra partly persist into function spaces (and partly don’t).

Typical vector spaces of functions are Cn(0, π). We have seen
(a) Differential operators: E.g.,

L =
d2

dx2
+ 3, L: C2(0, π) → C0(0, π).

Note: This notation means Ly = y′′ + 3y, not y′′ + 3.
(b) Integral operators: For a suitable function G,

Gy(x) =
∫ π

0

G(x, t)f(t) dt, G: C0(0, π) → C0(0, π).

This lecture focuses on the following . . .

Example: Let ω be a positive real number, not an integer. Define

Gω(x, t) =
sin(ωx<) sin(ω(x> − π))

ω sin(ωπ)
,

where x< = min(x, t), x> = max(x, t). (It turns out that G: C0(0, π) → C2(0, π) in this
case.)

Remark: G(x, t) is like a matrix for the operator G. But there is no function that
can act as a matrix for L (or for I: C0 → C0). Unfortunately, the official terminology for
the function G(x, t) is: the integral kernel of the operator G.

II. The main claim: G is the inverse of L

For ω > 0 and not integer, define

L =
d2

dx2
+ ω2.

Since solutions of differential equations are not unique until initial or boundary data are
imposed, in order for L to have an inverse (and still be a linear operator) we need to
restrict its domain to build in enough homogeneous boundary data: Let

D = {y ∈ C2: y(0) = 0 = y(π)}
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and henceforth consider L with D as domain.

Proposition: G is the inverse of L:

Ly = f ⇐⇒ y = Gf.

Verification: We have to show that

y(x) =
∫ π

0

Gω(x, t)f(t) dt

satisfies the differential equation y′′ + ω2y = f and the boundary conditions y(0) = 0 =
y(π). The definition of Gω gives

y(x) =
∫ x

0

sin(ωt) sin(ω(x− π))
ω sin(ωπ)

f(t) dt +
∫ π

x

sin(ωx) sin(ω(t− π))
ω sin(ωπ)

f(t) dt,

from which it is easy to see that the boundary conditions are satisfied.

Differentiate to get

y′(x) =
sin(ωx) sin(ω(x− π))

ω sin(ωπ)
f(x)− sin(ωx) sin(ω(x− π))

ω sin(ωπ)
f(x)

+
∫ x

0

sin(ωt) cos(ω(x− π))
sin(ωπ)

f(t) dt +
∫ π

x

cos(ωx) sin(ω(t− π))
sin(ωπ)

f(t) dt,

and the first two terms cancel. Therefore,

y′′(x) =
sin(ωx) cos(ω(x− π))

ω sin(ωπ)
f(x)− cos(ωx) sin(ω(x− π))

ω sin(ωπ)
f(x)

− ω

∫ x

0

sin(ωt)sin(ω(x− π))
sin(ωπ)

f(t) dt− ω

∫ π

x

sin(ωx) sin(ω(t− π))
sin(ωπ)

f(t) dt.

This time the second two terms are precisely −ω2y(x). Combining the first two terms by
a trig identity, we get

y′′(x) + ω2y(x) =
sin(ωx− ωx + ωπ)

sin(ωπ)
f(x)

= f(x).

This calculation has verified that LG = I on the domain C(0, π) (i.e., f
G→ y

L→ f).
To show that GL = I on the domain C2(0, π) (i.e., y

L→ f
G→ y) we need to appeal to the

uniqueness theorem for solutions of ordinary differential equations.
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III. Uniqueness — or the lack thereof

First consider a square matrix M . If λ ∈ R, the notation M−λ means the same thing
as M − λI. The inverse (M − λ)−1 exists if (and only if) det(M − λ) 6= 0. In that case
the nonhomogeneous linear equation (M − λ)~v = ~b has exactly one solution for each ~b:

~v = (M − λ)−1~b.

If det(M − λ) = 0 (which happens for a finite list of roots of the polynomial), then there
is a vector ~v0 such that M~v0 = λ~v0 (called an eigenvector). In that case (M − λ)~v = ~b
has infinitely many solutions if it has any at all, because to any particular solution we
could add any multiple of ~v0 . Our big point is that much the same thing happens with
the operator L.

Proposition:

(a) If ω is a nonzero integer, then y′′ + ω2y = f has many solutions satisfying y(0) = 0 =
y(π) if it has any such solutions at all.

(b) If ω is not a nonzero integer, then this boundary-value problem has at most one
solution. (Then our previous proposition shows that there is exactly one, and hence
GL = I.)

Proof:

(a) There is an eigenvector: y0(x) = sin(ωx) satisfies y′′ + ω2y = 0, y(0) = 0 = y(π).

(b) If y1 and y2 are solutions, then y = y1−y2 must satisfy y′′+ω2y = 0, y(0) = 0 = y(π).
The only solutions of the ODE and the first boundary condition are y(x) = C sin(ωx),
but then the second boundary condition, C sin(ωπ) = 0, can’t be satisfied unless
C = 0; so y1 and y2 are the same.

IV. Existence — or the lack thereof

We still have a loose end to tie up in the case that ω2 is an eigenvalue.

Proposition: When ω is a nonzero integer:

(a) If
∫ π

0
f(x) sin(ωx) dx = 0, then a solution of the boundary-value problem exists (but

isn’t unique).

(b) If
∫ π

0
f(x) sin(ωx) dx 6= 0, then no solution exists (satisfying both boundary conditions

as well as the ODE).

Compare the situation with a symmetric matrix M . (Note: Gω(t, x) = Gω(x, t),
which is the analog of the symmetry of (M − λ)−1.) In general, ker(M − λ) comprises
the vectors orthogonal (perpendicular) to all the rows of M − λ. When M is symmetric,
that’s the same as the rows orthogonal to all the columns of M − λ — i.e., orthogonal
to the range of M − λ. In other words: If (M − λ)~v0 = 0, and if (M − λ)~v = ~b has any
solutions ~v, then ~b is orthogonal to ~v0 (and conversely). The condition in our proposition
states that f is “perpendicular” to the eigenvector sin(ωx).
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Sketch of proof of proposition: Solve the ODE y′′ + ω2y = f by variation of
parameters:

y(x) = B(x) sin(ωx) + A(x) cos(ωx).

You get solvable first-order differential equations for A and B. The solution involves two
arbitrary constants of integration, A0 and B0 , which ought to to be found by imposing the
boundary conditions y(0) = 0 = y(π). That results in a 2× 2 linear system to be solved
for A0 and B0 .
(a) If ω is not a nonzero integer, the system is nonsingular (the solution is unique) and

you discover the formula for the Green function (which I pulled out of a hat earlier).
(b) If ω is a nonzero integer, the algebraic system is singular (rank 1); it is inconsistent if

the orthogonality integral is not zero, and it has nonunique solutions if the integral is
zero.
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