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The setting: Ω is a closed and bounded domain in R3 with
smooth boundary ∂Ω.

“Component” means a connected component (of Ω or ∂Ω).

Question 4: Can you find a nonzero vector field on Ω that is
divergence-free, curl-free, and normal to the boundary?

∇·~V = 0, ∇×~V = ~0, n̂×~V = ~0 (harmonic gradient)

Note: If ~V = ∇φ, then n̂× ~V = ~0 is equivalent to: φ is constant
on each component of the boundary.

Answer 4: Such a vector field exists iff at least one component
of Ω has more than one boundary component. (For example,
Ω can be the region between two concentric spheres.) More
precisely, the space of harmonic gradients is finite-dimensional
with dimension equal to

(# of components of ∂Ω) − (# of components of Ω);

each such ~V is the gradient of a function φ, the constant values
of φ on each boundary component are independent, and a dif-
ferent constant can be subtracted from φ on each component
of Ω without changing ~V .



Question 2: Given a vector field in Ω, how do you know
whether it is the curl of another vector field?

~V = ∇× ~U

Answer 2: Such a ~U exists iff ∇ · ~V = 0 and the flux of ~V

through each boundary component is 0.

Remark (combining 4 and 2): Any divergence-free vector field
is the sum of a curl and a harmonic gradient. (Each harmonic
gradient can be labeled by its fluxes through the boundary
components,

Fij =

∫
∂Ωij

n̂ · ~V dS,

where
∑

j Fij = 0 by Gauss’s theorem.)



Question 3: Can you find a nonzero vector field on Ω that is
divergence-free, curl-free, and tangent to the boundary?

∇ · ~V = 0, ∇× ~V = ~0, n̂ · ~V = 0 (harmonic knot)

Answer 3: Such a vector field exists iff at least one bound-
ary component has nonzero genus. (For example, ∂Ω can be a
torus.) More precisely, the space of harmonic knots is finite-
dimensional with dimension equal to the genus (number of
donut holes); each harmonic knot can be labeled by its line
integral around each hole, or, equivalently, by its flux through
each handle. (To be still more precise, we must learn what
“first absolute homology group” and “second relative homol-
ogy group” mean.)

Question 1: Given a vector field in Ω, how do you know
whether it is the gradient of a function?

~V = ∇φ

Answer 1: Such a φ exists iff ∇× ~V = ~0 and the line integral
of ~V around each hole is 0. (By Stokes’s theorem, it doesn’t
matter which path around the hole you consider.)

Remark (combining 3 and 1): Any curl-free vector field is the
sum of a gradient and a harmonic knot.



VF(Ω) is the (infinite-dimensional) vector space of all smooth
vector fields with domain Ω, equipped with the inner product
〈~V , ~W 〉 =

∫
Ω

~V (~r) · ~W (~r) d3r.

Hodge Decomposition Theorem: VF(Ω) is the direct sum
of 5 mutually orthogonal subspaces:

VF = FK ⊕ HK ⊕ CG ⊕ HG ⊕ GG,

FK = fluxless knots

= {∇ · ~V = 0, n̂ · ~V = 0, handle fluxes = 0}

HK = harmonic knots = {∇ · ~V = 0, ∇× ~V = ~0, n̂ · ~V = 0}

CG = curly gradients

= {~V = ∇φ, ∇ · ~V = 0, boundary fluxes = 0}

HG = harmonic gradients = {~V = ∇φ, ∇ · ~V = 0, n̂× ~V = 0}

GG = grounded gradients = {~V = ∇φ, φ = 0 on boundary}

Note: “Curly” means that ~V is the curl of something else, not
that ~V itself has nonzero curl.



Moreover,

ker curl = HK ⊕ CG ⊕ HG ⊕ GG,

ran grad = CG ⊕ HG ⊕ GG,

ran curl = FK ⊕ HK ⊕ CG ,

ker div = FK ⊕ HK ⊕ CG ⊕ HG ,

FK = (ker curl)⊥,

HK = (ker curl) ∩ (ran grad)⊥,

CG = (ran grad) ∩ (ran curl),

HG = (ker div) ∩ (ran curl)⊥,

GG = (ker div)⊥.

Remark: “Knots” in general are K = {∇ · ~V = 0, n̂ · ~V = 0}.
They represent incompressible fluid flow through Ω with no
vacuum or penetration at the boundary.

Let G = {~V = ∇φ}, DFG = {~V = ∇φ, ∇ · ~V = 0}.

Step 1: VF = K ⊕ G (orthogonal direct sum)

Step 2: K = FK ⊕ HK

Step 3: G = DFG ⊕ GG

Step 4: DFG = CG ⊕ HG

Steps 2 and 4 are hard, because they require construction of all
the harmonic vector fields and relating them to the topology
(as we outlined at the start).

Steps 1 and 3 are more elementary.


