Test A - Solutions

Name: \qquad

Calculators may be used for simple arithmetic operations only!

1. (15 pts.) Find all solutions (w, x, y, z) of the system $\left\{\begin{array}{r}w+2 x+y+z=1, \\ 3 w+2 x-y-2 z=0 .\end{array}\right\}$

Form the augmented matrix and reduce:

$$
\left.\begin{array}{c}
\left(\begin{array}{ccccc}
1 & 2 & 1 & 1 & 1 \\
3 & 2 & -1 & -2 & 0
\end{array}\right) \xrightarrow{(2) \rightarrow(2)-3(1)}\left(\begin{array}{cccc}
1 & 2 & 1 & 1 \\
0 & 1 \\
0 & -4 & -4 & -5
\end{array}\right)-3
\end{array}\right) \xrightarrow{(2) \rightarrow-\frac{1}{4}(2)} \text { (2) } \xrightarrow{\left(\begin{array}{ccccc}
1 & 2 & 1 & 1 & 1 \\
0 & 1 & 1 & \frac{5}{4} & \frac{3}{4}
\end{array}\right) \xrightarrow{(1) \rightarrow 2(2)}\left(\begin{array}{ccccc}
1 & 0 & -1 & -\frac{3}{2} & -\frac{1}{2} \\
0 & 1 & 1 & \frac{5}{4} & \frac{3}{4}
\end{array}\right) .} .
$$

Thus

$$
\begin{aligned}
w-y-\frac{3}{2} z & =-\frac{1}{2}, \\
x+y+\frac{5}{4} z & =\frac{3}{4} .
\end{aligned}
$$

Let

$$
y=s, \quad z=t \quad s \text { and } t \text { arbitrary). }
$$

Then

$$
w=s+\frac{3}{2} t-\frac{1}{2}, \quad x=-s-\frac{5}{4} t+\frac{3}{4}
$$

is the general solution. It is quickly checked by substituting back into the original equations.
2. (10 pts.) Define a mapping T of the function space $\mathcal{C}^{2}(-\infty, \infty)$ into the function space $\mathcal{C}(-\infty, \infty)$ by

$$
[T(f)](z) \equiv f^{\prime \prime}(z)+z^{2} f(z)+\int_{0}^{z} e^{-u} f(u) d u
$$

Is T a linear function? Explain.
YES. Let λ be an arbitrary real number and f and g be arbitrary functions in \mathcal{C}^{2}. Then

$$
\begin{aligned}
T(\lambda f+g)(z) & =(\lambda f+g)^{\prime \prime}(z)+z^{2}(\lambda f+g)(z)+\int_{0}^{z} e^{-u}(\lambda f(u)+g(u)) d u \\
& =\lambda f^{\prime \prime}(z)+g^{\prime \prime}(z)+\lambda z^{2} f(z)+z^{2} g(z)+\lambda \int_{0}^{z} e^{-u} f(u) d u+\int_{0}^{z} e^{-u} g(u) d u \\
& =\lambda[T f](z)+[T g](z)
\end{aligned}
$$

(where the known linearity of differentiation and integration have been used). Thus T satisfies the definition of linearity.
3. (30 pts.) Define $\left\{\begin{array}{l}u=x^{3}-2 y+z, \\ v=4 x+e^{y}+z^{2},\end{array}\right\} \quad \vec{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right), \quad \vec{r}_{0}=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)$.
(a) Find the direction of most rapid increase of u at the point r_{0}.

The direction of fastest increase is the direction of the gradient.

$$
\nabla u\left(\vec{r}_{0}\right)=\left.\left(3 x^{2},-2,1\right)\right|_{\vec{r}_{0}}=(12,-2,1) .
$$

The unit vector in that direction (for one point extra credit) is

$$
\frac{1}{\sqrt{144+4+1}}\left(\begin{array}{c}
12 \\
-2 \\
1
\end{array}\right)=\frac{1}{\sqrt{149}}\left(\begin{array}{c}
12 \\
-2 \\
1
\end{array}\right) .
$$

(b) Define $F: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ by $\binom{u}{v}=F(\vec{r})$. Construct the best affine approximation (a.k.a. the first-order approximation) to F around \vec{r}_{0}.
The Jacobian matrix of this function is

$$
J F=\left(\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z}
\end{array}\right)=\left(\begin{array}{ccc}
3 x^{2} & -2 & 1 \\
4 & e^{y} & 2 z
\end{array}\right) .
$$

Evaluate it at \vec{r}_{0} :

$$
J_{\vec{r}_{0}} F=\left(\begin{array}{ccc}
12 & -2 & 1 \\
4 & e & 4
\end{array}\right) .
$$

Now

$$
F(\vec{r}) \approx F\left(\vec{r}_{0}\right)+d_{\vec{r}_{0}} F\left(\vec{r}-\vec{r}_{0}\right),
$$

where the matrix of the differential $d_{\vec{r}_{0}} F$ is $J_{\vec{r}_{0}} F$. That is,

$$
F(r) \approx\binom{8}{12+e}+\left(\begin{array}{ccc}
12 & -2 & 1 \\
4 & e & 4
\end{array}\right)\left(\begin{array}{l}
x-2 \\
y-1 \\
z-2
\end{array}\right)
$$

Further simplification is optional (cf. part (c)).
(c) Define a curve by $\vec{r}(t)=\left(\begin{array}{c}2 t^{2} \\ t \\ -2 \cos (\pi t)\end{array}\right)$. Note that $\vec{r}(1)=\vec{r}_{0}$. Find the tangent vector to the curve at that point, and the parametrized equation of the tangent line. The tangent vector is

$$
\vec{r}^{\prime}(1)=\left.\left(\begin{array}{c}
4 t \\
1 \\
2 \pi \sin (\pi t)
\end{array}\right)\right|_{t=1}=\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right) .
$$

So the tangent line is

$$
\begin{aligned}
\vec{r} & =\vec{r}(1)+\vec{r}^{\prime}(1)(t-1) \\
& =\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)+\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right)(t-1) \\
& =\left(\begin{array}{c}
2+4(t-1) \\
1+(t-1) \\
2
\end{array}\right) .
\end{aligned}
$$

Further simplification is possible but not recommended.
(d) Find $\frac{d}{d t} F(\vec{r}(t))$ at $t=1$.

We can use parts of (b) and (c) in the chain rule:

$$
\begin{aligned}
\left.\frac{d}{d t} F(\vec{r}(t))\right|_{t=1} & =d_{\vec{r}_{0}} F\left(\vec{r}^{\prime}(1)\right) \quad\left[\text { also written }\left(J_{\vec{r}_{0}} F\right)\left(\vec{r}^{\prime}(1)\right)\right] \\
& =\left(\begin{array}{ccc}
12 & -2 & 1 \\
4 & e & 4
\end{array}\right)\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right)=\binom{46}{16+e}
\end{aligned}
$$

4. (15 pts.) Producing a yacht requires 1 ton of steel and 1 ton of aluminum. Producing an airplane requires 3 tons of steel and 2 tons of aluminum. Producing a ton of steel consumes 1 ton of coal and 2 tons of hematite. Producing a ton of aluminum consumes 4 tons of coal and 2 tons of bauxite. Organize these facts into matrices, and find the matrix that tells you how much coal (c), hematite (h), and bauxite (b) is needed to make y yachts and p airplanes.
Translate the given information into equations:

$$
\binom{s}{a}=\left(\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right)\binom{y}{p}, \quad\left(\begin{array}{c}
c \\
h \\
b
\end{array}\right)=\left(\begin{array}{ll}
1 & 4 \\
2 & 0 \\
0 & 2
\end{array}\right)\binom{s}{a} .
$$

Give the matrices names:

$$
A=\left(\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 4 \\
2 & 0 \\
0 & 2
\end{array}\right)
$$

Then

$$
\left(\begin{array}{l}
c \\
h \\
b
\end{array}\right)=B A\binom{y}{p}
$$

where

$$
B A=\left(\begin{array}{cc}
5 & 11 \\
2 & 6 \\
2 & 4
\end{array}\right)
$$

5. (10 pts.) The commutator of two matrices is defined as $[A, B]=A B-B A$. The trace of a matrix is the sum of its diagonal elements:

$$
\operatorname{tr} M=\sum_{j} M_{j j}
$$

(a) What condition must the matrices A and B satisfy in order for their commutator to be defined?
They must be square matrices of the same size $(n \times n)$.
(b) Prove that the trace of any commutator is equal to zero.

$$
\operatorname{tr}(A B)=\sum_{j=1}^{n}(A B)_{j j}=\sum_{j=1}^{n} \sum_{k=1}^{n} A_{j k} B_{k j}
$$

by definition of matrix multiplication. Therefore, by interchanging of the matrices, then renaming of indices, then commuting the multiplication of numbers,

$$
\operatorname{tr}(B A)==\sum_{j=1}^{n} \sum_{k=1}^{n} B_{j k} A_{k j}=\sum_{k=1}^{n} \sum_{j=1}^{n} B_{k j} A_{j k}=\operatorname{tr}(A B) .
$$

Thus

$$
\operatorname{tr}(A B-B A)=0,
$$

since tr is obviously a linear function of M.
6. (20 pts.) Find the inverse (if it exists) of the matrix $M=\left(\begin{array}{lll}3 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 4 & 2\end{array}\right)$.

$$
\begin{gathered}
\left(\begin{array}{llllll}
3 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
2 & 4 & 2 & 0 & 0 & 1
\end{array}\right) \xrightarrow{(1) \leftrightarrow(2)}\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
3 & 1 & 1 & 1 & 0 & 0 \\
2 & 4 & 2 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\substack{(2) \rightarrow(2)-3(1) \\
(3) \rightarrow(3)-2(1)}} \\
\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & -2 & 1 & -3 & 0 \\
0 & 4 & 0 & 0 & -2 & 1
\end{array}\right) \xrightarrow{(3) \rightarrow(3)-4(2)}\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & -2 & 1 & -3 & 0 \\
0 & 0 & 8 & -4 & 10 & 1
\end{array}\right) \xrightarrow{(2) \rightarrow(2)+\frac{1}{4}(3)} \xrightarrow{(3) \rightarrow \frac{1}{8}(3)} \\
\\
\end{gathered}\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{2} & \frac{1}{4} \\
0 & 0 & 1 & -\frac{1}{2} & \frac{5}{4} & \frac{1}{8}
\end{array}\right) \xrightarrow{(1) \rightarrow(1)-(3)}\left(\begin{array}{cccccc}
1 & 0 & 0 & \frac{1}{2} & -\frac{1}{4} & -\frac{1}{8} \\
0 & 1 & 0 & 0 & -\frac{1}{2} & \frac{1}{4} \\
0 & 0 & 1 & -\frac{1}{2} & \frac{5}{4} & \frac{1}{8}
\end{array}\right) . .
$$

Therefore,

$$
M^{-1}=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{4} & -\frac{1}{8} \\
0 & -\frac{1}{2} & \frac{1}{4} \\
-\frac{1}{2} & \frac{5}{4} & \frac{1}{8}
\end{array}\right) .
$$

Check:

$$
M M^{-1}=\left(\begin{array}{lll}
3 & 1 & 1 \\
1 & 0 & 1 \\
2 & 4 & 2
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{4} & -\frac{1}{8} \\
0 & -\frac{1}{2} & \frac{1}{4} \\
-\frac{1}{2} & \frac{5}{4} & \frac{1}{8}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

