
Math. 311 (Fulling) 23 April 2004

Test C – Solutions

Name:

Calculators may be used for simple arithmetic operations only!

1. (20 pts.) Let ~v1 = (1, 1, 1, 1) , ~v2 = (1,−1, 2,−1) .
(a) Find an orthonormal basis, {û1, û2} , for the two-dimensional subspace of R4 spanned

by ~v1 and ~v2 .
‖~v1‖2 = 1 + 1 + 1 + 1 = 4 , so a normalized vector is

û1 =
~v1

‖~v1‖ =
1

2
(1, 1, 1, 1).

Now 〈û1,~v2〉 = 1
2 (1− 1 + 2− 1) = 1

2 , so the part of ~v2 parallel to ~v1 is

~v2‖ = û1〈û1,~v2〉 =
1

4
(1, 1, 1, 1),

and hence the perpendicular part is

~v2⊥ = ~v2 − ~v2‖ = (1,−1, 2,−1)− (
1

4
,
1

4
,
1

4
,
1

4
) =

1

4
(3,−5, 7,−5).

Next we have

‖~v2⊥‖2 =
1

16
(9 + 25 + 49 + 25) =

108

16
.

(Actually, I could have dropped the factor 1
4 , since it cancels out at the next step.) Therefore, the

normalized vector orthogonal to û1 is

û2 =
~v2⊥
‖~v2⊥‖

=
1√
108

(3,−5, 7,−5) =
1

6
√

3
(3,−5, 7,−5).

(b) Give a formula for P , the orthogonal projection operator onto that subspace. (That
is, for any ~v in R4 , P (~v) is the part of ~v “parallel” to the plane span{~v1, ~v2} .)

This is just the next step in a Gram–Schmidt construction:

P (~v) = ~v‖ = û1〈û1,~v〉+ û2〈û2,~v〉,

where û1 and û2 were found in (a).

2. (30 pts.) In the (x, y) plane define new coordinates (u, v) by x =
u

2
, y =

u2

4
+ v .

(a) Find the tangent vectors to the coordinate curves (as functions of u and v ).
∂~r

∂u
=

(
1
2
u
2

)
,

∂~r

∂v
=

(
0

1

)
.

Note: Since these vectors are not orthogonal, there is no point in normalizing them to unit length.
The same remark applies to the vectors in (b).
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(b) Find the normal vectors to the coordinate “surfaces” (which are actually curves in this
two-dimensional case), as functions of u and v .

From (a), the Jacobian of the coordinate transformation and its inverse (by the 2×2 Cramer’s rule)
are

J =

(
1
2 0
u
2 1

)
, J−1 =

1

1/2

(
1 0

−u
2

1
2

)
=

(
2 0

−u 1

)
.

The standard normal vectors are the rows of J−1 :

∇u = (2, 0), ∇v = (−u, 1).

(c) Evaluate
∫∫

v2 dx dy over the region bounded by the curves v = 0 , u = 2 , v = 1 ,
and u = 1 .

From J found in (b), we have det J = 1
2 . So the integral is

∫∫
v2 det J du dv =

∫ 2

1

du

∫ 1

0

1

2
v2 dv =

1

2

v3

3

∣∣∣∣
1

0

=
1

6
.

(d) Sketch the curves v = 0 and u = 2 , the region in (c), and the two sets of basis vectors
in (a) and (b) evaluated (and drawn) at the point (u, v) = (2, 0) . Clearly label the
vectors as ∇u , ∂~r

∂u , etc.
The Cartesian coordinates of the point are
(x, y) = (1, 1) .
The u = constant curves are vertical lines; the
v = constant curves are parabolas, y = x2+v .

∂~r

∂u
=

(
1
2

1

)
,

∂~r

∂v
=

(
0

1

)
.

∇u = (2, 0), ∇v = (−2, 1).

Remark: ∇u is orthogonal to ∂~r
∂v and ∇v

is orthogonal to ∂~r
∂u , although the elements of

each basis are not orthogonal to each other.
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3. (28 pts.) Find a quadrature rule (approximate integration formula) of the form

∫ ∞
0

f(t) e−t dt ≈ a1f(0) + a2f(1) + a3f(10)

by requiring that the rule gives the exact answer for all f in P2 (the quadratic poly-
nomials). Use Cramer’s rule to solve for the coefficients, showing intermediate
steps. Useful information:

∫∞
0 tne−t dt = n! .
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Requiring that the rule gives the right answer on the standard basis for P2 yields three equations,

a1 + a2 + a3 =

∫ ∞

0

e−t dt = 1,

a2 + 10a3 =

∫ ∞

0

te−t dt = 1,

a2 + 100a3 =

∫ ∞

0

t2e−t dt = 2.

The determinant of the system is

∆ =

∣∣∣∣∣
1 1 1

0 1 10

0 1 100

∣∣∣∣∣ =

∣∣∣∣ 1 10

1 100

∣∣∣∣ = 90.

Therefore,

a1 =
1

90

∣∣∣∣∣
1 1 1

1 1 10

2 1 100

∣∣∣∣∣ =
1

90

[∣∣∣∣ 1 10

1 100

∣∣∣∣−
∣∣∣∣ 1 10

2 100

∣∣∣∣ +

∣∣∣∣ 1 1

2 1

∣∣∣∣
]

=
1

90
(90− 80− 1) =

9

90
=

1

10
,

a2 =
1

90

∣∣∣∣∣
1 1 1

0 1 10

0 2 100

∣∣∣∣∣ =
1

90

∣∣∣∣ 1 10

2 100

∣∣∣∣ =
80

90
=

8

9
,

a3 =
1

90

∣∣∣∣∣
1 1 1

0 1 1

0 1 2

∣∣∣∣∣ =
1

90

∣∣∣∣ 1 1

1 2

∣∣∣∣ =
1

90
.

Thus, finally, ∫ ∞

0

f(t) e−t dt ≈ 1

10
f(0) +

8

9
f(1) +

1

90
f(10).

4. (22 pts.) Let ~B(x, y, z) =
x

(x2 + y2)n
ı̂ +

y

(x2 + y2)n
̂ , where n is an arbitrary, fixed

number. (Note that Bz = 0 .)

(a) Calculate
∫∫

S
~B · d~S when S is the piece of cylindrical surface defined in standard

cylindrical coordinates by

r = 2, 0 < θ < π, 0 < z < 3.

(The result will be a function of n .)
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Easy way: Note that ~B = x
r2n ı̂ + y

r2n ̂ is perpendicular to the surface. The unit normal vector is

n̂ = x
r ı̂ + y

r ̂ . Thus

~B · n̂ =
x2 + y2

r2n+1
=

1

r2n−1
,

which is constant on the cylinder. So we merely need to multiply by the area of S :

∫∫
S

~B · d~S =
1

22n−1
× 6π =

3π

4n−1
.

Hard way: Since x = 2 cos θ , y = 2 sin θ , z = z , we have

∫∫
S

~B · d~S =

∫∫
[Bx dy dz + By dz dx + Bz dx dy]

=

∫∫ [
2 cos θ

4n
(2 cos θdθ) dz +

2 sin θ

4n
dz (−2 sin θ) dθ

]

=
1

4n−1

∫∫ [
cos2 θ dθ dz + sin2 θ dθ dz

]

=
1

4n−1

∫ π

0

dθ

∫ 3

0

dz =
3π

4n−1
.

(b) For what value(s) of n does there exist a vector potential ~A(x, y, z) such that ~B = ∇× ~A
(everywhere except possibly on the axis, x = y = 0 )?

We need

0 = ∇ · ~B =
∂

∂x

(
x

(x2 + y2)n

)
+

∂

∂y

(
y

(x2 + y2)n

)

=
1

(x2 + y2)n
− 2nx2

(x2 + y2)n+1
+

1

(x2 + y2)n
− 2ny2

(x2 + y2)n+1

=
2x2 + 2y2 − 2n(x2 + y2)

(x2 + y2)n+1

=
2(1− n)

(x2 + y2)n
.

(This calculation would be easier if we knew the formula for the divergence operator in cylindrical
coordinates, but we haven’t studied that.) So the needed condition is

n = 1.

(This means that ~B = n̂
r . On the axis, ~B , n̂ , and ∇ · ~B are all undefined. Since n̂ points

outward, it is geometrically obvious that ∇ · ~B should be regarded as infinite on the axis, much as
the divergence of the electric field of a point charge is infinite at the origin. In this case we have
“magnetic monopole charge” concentrated along the whole axis.)


