Test A - Solutions

Calculators may be used for simple arithmetic operations only!

1. (15 pts.) Find a parametric representation of the plane (in \mathbf{R}^{3} with coordinates (x, y, z)) whose equation is $3 x-2 z=-2$.

Let's do this by the formal row-reduction method of Chapter 2. The augmented matrix and its reduced form are

$$
\left(\begin{array}{llll}
3 & 0 & -2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & -\frac{2}{3} & -\frac{2}{3}
\end{array}\right) .
$$

Working from the end of the variable list back to the beginning, we see that we must take

$$
z=t, \quad y=s \quad \text { (arbitrary parameters) }
$$

and then

$$
x=\frac{2}{3} t-\frac{2}{3} .
$$

In vector form,

$$
\vec{x}=s\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{l}
\frac{2}{3} \\
0 \\
1
\end{array}\right)+\left(\begin{array}{c}
-\frac{2}{3} \\
0 \\
0
\end{array}\right) .
$$

It should be noted that there are other correct answers, such as

$$
\vec{x}=s\left(\begin{array}{c}
1 \\
0 \\
\frac{3}{2}
\end{array}\right)+t\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

Also, there are other ways of presenting an answer, such as

$$
\vec{x}=\left(\begin{array}{c}
\frac{2}{3}(t-1) \\
s \\
t
\end{array}\right)
$$

Remarks: The answer to a problem like this is easily checked: The constant term must by itself satisfy the equation, since it corresponds to $s=t=0$. The vectors multiplied by s and t must satisfy the corresponding homogeneous equation, $3 x-2 z=0$. Unfortunately, passing these tests does not guarantee that your solution is complete: The main lesson of this problem is the necessity of including the term proportional to $(0,1,0)$ (or saying something about what the coordinate y does!). If you leave out that term, you have constructed just a line, not a parametrized plane.
2. (15 pts.) An A2X30 module contains 1000 cubic inches of steel and 20 cubic inches of titanium. A B62W subassembly contains 10 cubic inches of steel and 1 cubic inch of titanium. A supertanker is built from 10 A2X30s and 8 B 62 Ws . A minesweeper is built from 5 A 2 X 30 s and 3 B 62 Ws .

Organize these facts into matrices, and find the matrix that should be used to calculate the quantities of metals needed to make k tankers and m minesweepers.

Let $A, B, s . t$ have the obvious meanings. Translating the sentences into equations, we have

$$
\begin{aligned}
& \left.\binom{s}{t}=\left(\begin{array}{cc}
1000 & 10 \\
20 & 1
\end{array}\right)\binom{A}{B} \quad \text { (let's call this matrix } M\right), \\
& \binom{A}{B}=\left(\begin{array}{cc}
10 & 5 \\
8 & 3
\end{array}\right)\binom{k}{m} \quad \text { (let's call this matrix } N \text {). }
\end{aligned}
$$

(Be sure that your matrices express the correct relationships, calculating the required inputs from the desired outputs. For example, the top line of the first matrix equation expresses the formula $s=1000 A+10 B$, saying that we need 1000 units of steel for each A module and 10 units of steel for each B module.) Therefore,

$$
\binom{s}{t}=M N\binom{k}{m},
$$

where

$$
M N=\left(\begin{array}{cc}
1000 & 10 \\
20 & 1
\end{array}\right)\left(\begin{array}{cc}
10 & 5 \\
8 & 3
\end{array}\right)=\left(\begin{array}{cc}
10080 & 5030 \\
208 & 103
\end{array}\right)
$$

3. (20 pts.) Atoms near the point $\vec{x}_{0} \equiv\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$ sit in an electric field $\vec{E}=\left(\begin{array}{c}x^{2}-y \\ x^{2}+y^{2} \\ z^{3}\end{array}\right)$.
(a) Find the first-order (best affine) approximation to $\vec{E}(\vec{x})$ for \vec{x} near \vec{x}_{0}.

The Jacobian matrix is

$$
\frac{d \vec{E}}{d \vec{x}}=\left(\begin{array}{ccc}
2 x & -1 & 0 \\
2 x & 2 y & 0 \\
0 & 0 & 3 z^{2}
\end{array}\right)=\left(\begin{array}{ccc}
6 & -1 & 0 \\
6 & 4 & 0 \\
0 & 0 & 3
\end{array}\right) \text { at } \vec{x}_{0}
$$

Therefore,

$$
\vec{E}(\vec{x}) \approx \vec{E}\left(\vec{x}_{0}\right)+\frac{d \vec{E}}{d \vec{x}}\left(\vec{x}-\vec{x}_{0}\right)=\left(\begin{array}{c}
7 \\
13 \\
1
\end{array}\right)+\left(\begin{array}{ccc}
6 & -1 & 0 \\
6 & 4 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x-3 \\
y-2 \\
z-1
\end{array}\right) .
$$

(b) Suppose that the index of refraction of a crystal depends on the electric field according to the law

$$
n=1+0.01 E_{x}^{2}+0.04 E_{y}^{2}+0.02 E_{z}^{2}
$$

Use the multidimensional chain rule to find $\frac{\partial n}{\partial y}$ at \vec{x}_{0}.
Method 1: $\quad \nabla n=\frac{d n}{d \vec{E}} \frac{d \vec{E}}{d \vec{x}}=\left.\left(0.02 E_{x}, 0.08 E_{y}, 0.04 E_{z}\right)\right|_{\vec{x}_{0}} \frac{d \vec{E}}{d \vec{x}}=$

$$
(0.14,1.04,0.04)\left(\begin{array}{ccc}
6 & -1 & 0 \\
6 & 4 & 0 \\
0 & 0 & 3
\end{array}\right)=(*, 4.02, *)
$$

where the numbers $*$ are irrelevant and $4.02=\frac{\partial n}{\partial y}$.
Method 2: (This is really the same method, but in "classical" partial-derivative notation instead of vectors and matrices.)

$$
\frac{\partial n}{\partial y}=\frac{\partial n}{\partial E_{x}} \frac{\partial E_{x}}{\partial y}+\frac{\partial n}{\partial E_{y}} \frac{\partial E_{y}}{\partial y}+\frac{\partial n}{\partial E_{z}} \frac{\partial E_{z}}{\partial y}=0.02 E_{x}(-1)+0.08 E_{y}(2 y)+0.04 E_{z}(0)
$$

When all this is evaluated at $(x, y, z)=(3,2,1)$, we again get 4.02.
4. (15 pts.) Let's define a mapping Q of the function space $\mathcal{C}^{1}(0, \infty)$ into the function space $\mathcal{C}(0, \infty)$ by

$$
Q(f)(t) \equiv \frac{d f}{d t}+(2 t+1) f(t)^{2}
$$

(Here t is the independent variable of the functions in $\mathcal{C}^{1}(0, \infty)$, and f is a generic element of $\mathcal{C}^{1}(0, \infty)$.) Is Q linear, affine, or nonlinear? Justify your answer.
Nonlinear. It is enough to show that either of the linearity conditions is violated; for instance,

$$
Q(2 f)=2 \frac{d f}{d t}+4(2 t+1) f^{2} \neq 2 \frac{d f}{d t}+2(2 t+1) f^{2}=2 Q(f) .
$$

5. (15 pts.)
(a) Solve the system $\left\{\begin{array}{c}x+y=2, \\ x-b y=0\end{array}\right\}$ for x and y (with b as a parameter).

Set up an augmented matrix and reduce:

$$
\left(\begin{array}{ccc}
1 & 1 & 2 \\
1 & -b & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 1 & 2 \\
0 & -b-1 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 2-\frac{2}{b+1} \\
0 & 1 & \frac{2}{b+1}
\end{array}\right) .
$$

We note that the last step assumes $b+1 \neq 0$. Therefore, if $b \neq-1$, we have

$$
x=2-\frac{2}{b+1}=\frac{2 b}{b+1}, \quad y=\frac{2}{b+1} .
$$

(b) Point out any values of b that are "special" with regard to existence and uniqueness of solutions. (Explain.)
If $b=-1$, the equations are inconsistent; no solutions exist.
6. (20 pts.) Find the inverse (if it exists) of the matrix $M=\left(\begin{array}{ccc}3 & 2 & 1 \\ 1 & 1 & -2 \\ 2 & 1 & 0\end{array}\right)$.

$$
\begin{array}{ccc}
\left(\begin{array}{cccccc}
3 & 2 & 1 & 1 & 0 & 0 \\
1 & 1 & -2 & 0 & 1 & 0 \\
2 & 1 & 0 & 0 & 0 & 1
\end{array}\right) & \begin{array}{c}
(1) \leftrightarrow(2) \\
(2) \\
(3) \leftarrow(2)-3(1) \\
(3)-2(1)
\end{array} \\
\left(\begin{array}{cccccc}
1 & 1 & -2 & 0 & 1 & 0 \\
0 & -1 & 7 & 1 & -3 & 0 \\
0 & -1 & 4 & 0 & -2 & 1
\end{array}\right) & \begin{array}{c}
(2) \leftarrow-(2) \\
(1) \\
(3) \leftarrow(1)-(2) \\
\\
\\
\left(\begin{array}{cccccc}
1 & 0 & 5 & 1 & -2 & 0 \\
0 & 1 & -7 & -1 & 3 & 0 \\
0 & 0 & 3 & 1 & -1 & -1
\end{array}\right)
\end{array} & \begin{array}{c}
(3)+(2) \\
(2) \leftarrow(1)-5(3) \\
(2)
\end{array} \\
& & \\
\left(\begin{array}{cccccc}
1 & 0 & 0 & -\frac{2}{3} & -\frac{1}{3} & \frac{5}{3} \\
0 & 1 & 0 & \frac{4}{3} & \frac{2}{3} & -\frac{7}{3} \\
0 & 0 & 1 & \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3}
\end{array}\right) .
\end{array}
$$

Therefore,

$$
M^{-1}=\frac{1}{3}\left(\begin{array}{ccc}
-2 & -1 & 5 \\
4 & 2 & -7 \\
1 & -1 & -1
\end{array}\right)
$$

