Test B - Solutions

1. (18 pts.) Determine whether each set is linearly independent. If it is not, find an independent set with the same span.
(a) $\left\{\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)\right\}$

YES - obviously these two vectors are not multiples of each other. More formally,

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & -1 & 4
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -5 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 9 \\
0 & 1 & -\frac{2}{5}
\end{array}\right)
$$

and we see that the number of nonzero rows has not decreased as we put the matrix into row echelon form.
(b) $\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right),\left(\begin{array}{l}1 \\ 7 \\ 5\end{array}\right)\right\}$

Let's put the vectors into a matrix as rows and reduce:

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 4 \\
1 & 7 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -5 & -2 \\
0 & 5 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & \frac{2}{5} \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & \frac{11}{5} \\
0 & 1 & \frac{2}{5} \\
0 & 0 & 0
\end{array}\right)
$$

So the answer is NO. A basis for the span is

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
\frac{2}{5}
\end{array}\right)\right\}, \quad \text { or } \quad\left\{\left(\begin{array}{c}
1 \\
0 \\
\frac{11}{5}
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
\frac{2}{5}
\end{array}\right)\right\}
$$

or any two of the original three vectors (since in this case none of the vectors is a multiple of any of the others).
2. (12 pts.) Two bases for the solution space of $y^{\prime \prime}=9 y$ are

$$
\mathcal{A}=\left\{\vec{a}_{1}=e^{3 t}, \vec{a}_{2}=e^{-3 t}\right\} \quad \text { and } \quad \mathcal{B}=\left\{\vec{b}_{1}=\cosh (3 t), \vec{b}_{2}=\frac{1}{3} \sinh (3 t)\right\}
$$

Find the matrix that expresses the coordinates of an arbitrary vector with respect to the \mathcal{A} basis in terms of its coordinates with respect to the \mathcal{B} basis.
From the definition of the hyperbolic functions, we have

$$
\begin{aligned}
& \vec{b}_{1}=\frac{1}{2} \vec{a}_{1}+\frac{1}{2} \vec{a}_{2}, \\
& \vec{b}_{2}=\frac{1}{6} \vec{a}_{1}-\frac{1}{6} \vec{a}_{2} .
\end{aligned}
$$

From here there are many equivalent ways to proceed:

Method 1: Therefore,

$$
\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{6} & -\frac{1}{6}
\end{array}\right)^{\mathrm{t}}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{6} \\
\frac{1}{2} & -\frac{1}{6}
\end{array}\right)
$$

maps the \mathcal{B}-coordinates into the \mathcal{A}-coordinates, as demanded.
Method 2: Therefore,

$$
\left(\vec{b}_{1}, \vec{b}_{2}\right)=\left(\vec{a}_{1}, \vec{a}_{2}\right)\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{6} \\
\frac{1}{2} & -\frac{1}{6}
\end{array}\right),
$$

and the matrix appearing in this equation is the desired one.
Method 3: Therefore, if $y=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}$ and also $y=y_{1} \vec{b}_{1}+y_{2} \vec{b}_{2}$, then

$$
y=y_{1}\left(\frac{1}{2} \vec{a}_{1}+\frac{1}{2} \vec{a}_{2}\right)+y_{2}\left(\frac{1}{6} \vec{a}_{1}-\frac{1}{6} \vec{a}_{2}\right)=\left(\frac{1}{2} y_{1}+\frac{1}{6} y_{2}\right) \vec{a}_{1}+\left(\frac{1}{2} y_{1}-\frac{1}{6} y_{2}\right) \vec{a}_{2} .
$$

Therefore,

$$
\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{6} \\
\frac{1}{2} & -\frac{1}{6}
\end{array}\right)\binom{y_{1}}{y_{2}} .
$$

Remark: The factor $\frac{1}{3}$ was not just thrown in to make the problem harder. \vec{b}_{2} is a "natural" solution to use, because it satisfies the initial conditions $y(0)=0, y^{\prime}(0)=1$.
3. (32 pts.) A linear mapping $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ is defined by

$$
[L(p)](t)=\left(t^{2}-4\right) p^{\prime \prime}(t)+t p^{\prime}(t)-4 p(t) \quad\left(p^{\prime} \equiv \frac{d p}{d t}, \text { etc. }\right)
$$

Note that $L\left(t^{2}\right)=-8$ (more precisely: if $p(t)=t^{2}$, then $L(p)(t)=-8$ for all t). (This is free information! You don't have to rederive it.)
(a) Find the matrix that represents L with respect to the standard basis $\left\{t^{2}, t, 1\right\}$ for \mathcal{P}_{2}.

$$
\begin{aligned}
L\left(t^{2}\right) & =-8 \\
L(t) & =0+t-4 t=-3 t, \quad \text { Therefore, the matrix is } \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -3 & 0 \\
-8 & 0 & -4
\end{array}\right) .
\end{aligned}
$$

(b) Is L surjective (onto \mathcal{P}_{2})? If not, what is its range?

NO. The range is \mathcal{P}_{1}, the first-degree polynomials. This is clear either from the matrix - the span of the columns being the same as the span of

$$
\left\{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

- or from the action of L on the basis polynomials, which yields the constants and the multiples of t but no t^{2} terms.
(c) Is L injective? If not, what is its kernel?

NO. From (b) and the dimension theorem, the kernel must have dimension $3-2=1$. To see what the kernel is, reduce the matrix:

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 \\
-8 & 0 & -4 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & \frac{1}{2} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Thus $p(t)=a t^{2}+b t+c$ is in the kernel if

$$
a+\frac{1}{2} c=0, \quad b=0 .
$$

That is, the kernel consists of the multiples of the polynomial

$$
-\frac{1}{2} t^{2}+1
$$

(d) Use "superposition principles" to find all solutions in \mathcal{P}_{2} of the differential equation

$$
\left(t^{2}-4\right) p^{\prime \prime}(t)+t p^{\prime}(t)-4 p(t)=-16
$$

Obviously one solution is $p_{\mathrm{p}}(t)=2 t^{2}$. The general solution, therefore, is $p=p_{\mathrm{p}}+p_{\mathrm{c}}$, where p_{c} is the general element of the kernel (general solution of the corresponding homogeneous equation, $L(p)=0)$. Thus, all the solutions in \mathcal{P}_{2} are

$$
p(t)=2 t^{2}+\left(-\frac{1}{2} t^{2}+1\right) c \quad \text { for arbitrary numbers } c .
$$

(Of course, there are other solutions of the differential equation that are not quadratic polynomials.)
4. (22 pts.) The matrix $M=\left(\begin{array}{ccc}1 & 2 & 1 \\ 2 & -1 & 4\end{array}\right)$ represents a linear operator $L: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ with respect to the natural bases.
(a) What are the rank and the nullity of M ? (The nullity is the dimension of the kernel of L.)
The rank is 2: Method 1: It can't be greater than 2, because the dimension of the whole column space is just 2. It can't be less than 2, because the three columns are not all proportional. Method 2: The (column) rank is equal to the row rank, and we already saw in Qu. 1(a) that the row rank of this matrix is 2 .

Therefore, by the dimension theorem, the nullity is $3-2=1$. This can also be checked directly, by reducing the augmented matrix to (compare Qu. 1(a))

$$
\left(\begin{array}{cccc}
1 & 0 & \frac{9}{5} & 0 \\
0 & 1 & -\frac{2}{5} & 0
\end{array}\right)
$$

from which it is clear that the third coordinate of the solution is arbitrary and the first and second coordinates are then determined.
(b) What matrix represents L if we switch to the basis $\left\{\binom{1}{1},\binom{-1}{1}\right\}$ for \mathbf{R}^{2} ? (The basis for the domain is still the natural one.)
Call the new basis vectors \vec{b}_{1} and \vec{b}_{2}. In terms of the natural basis vectors, we have

$$
\begin{aligned}
& \vec{b}_{1}=\hat{e}_{1}+\hat{e}_{2} \\
& \vec{b}_{2}=-\hat{e}_{1}+\hat{e}_{2} .
\end{aligned}
$$

Therefore (reasoning as in Qu. 2),

$$
C=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

maps \vec{b}-coordinates into natural coordinates. (More quickly, this matrix is obtained simply by "stacking the new basis vectors together".) Therefore,

$$
C^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

maps natural coordinates to \vec{b}-coordinates. To solve our problem we need to postprocess the naturalbasis calculation of L with C^{-1}. Therefore, the desired matrix is

$$
C^{-1} M=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & -1 & 4
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
3 & 1 & 5 \\
1 & -3 & 3
\end{array}\right) .
$$

5. (16 pts.)
(a) Explain what a "subspace" is.

A subspace of a vector space \mathcal{V} is a subset of \mathcal{V} that is closed under addition and scalar multiplication. The meaning of "closed" is made clear by the proofs below.
(b) Prove that one of these is a subspace (of a vector space \mathcal{V}). [Do either (A) or (B) your choice.]
(A) The kernel of a linear function $L: \mathcal{V} \rightarrow \mathcal{V}$.

Suppose that we have two elements of the kernel: $L\left(\vec{v}_{1}\right)=0=L\left(\vec{v}_{2}\right)$. Then

$$
L\left(r \vec{v}_{1}+\vec{v}_{2}\right)=r L\left(\vec{v}_{1}\right)+L\left(\vec{v}_{2}\right)
$$

That is, $r \vec{v}_{1}+\vec{v}_{2}$ is also in the kernel. Thus the kernel is closed under the vector operations.
(B) The span of a list of vectors in $\mathcal{V},\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{N}\right\}$.

Suppose that we have two elements of the span:

$$
\vec{u}_{1}=\sum_{j=1}^{N} c_{j} \vec{v}_{j} \quad \text { and } \quad \vec{u}_{2}=\sum_{j=1}^{N} d_{j} \vec{v}_{j} .
$$

Then

$$
r \vec{u}_{1}+\vec{u}_{2}=r \sum_{j=1}^{N} c_{j} \vec{v}_{j}+\sum_{j=1}^{N} d_{j} \vec{v}_{j}=\sum_{j=1}^{N}\left(r c_{j}+d_{j}\right) \vec{v}_{j},
$$

which is also an element of the span, as was to be proved.

