Appendix B
More on the Convergence of Fourier Series

We return to the big, unanswered question: Is the Fourier series

o0

Z {an cos(nz) + by sin(ﬁ:c)] .

n=0

with the coefficients calculated from a function f by the proper formulas, actually
equal to f(z)? In what sense, and under what circumstances?

We will discuss four different types of convergence behavior:
1. pointwise convergence
2. uniform convergence
3. summability
4. mean convergence

In each case we have to define what the term means and learn conditions that are
adequate to assure that it applies to the function in question. Along the way we’ll
seek out examples of functions to which it doesn’t apply, the better to appreciate
the property when we have it and to understand why such conditions are needed to
insure it.

The philosophy of this course is that you should see proofs of the major Fourier
convergence theorems — primarily for the “character-building” effects of the expe-
rience. Students who are not math majors seldom take upper-level math courses
that, for the first time, pay serious attention to proofs. But competent physicists
(etc.) need to develop some degree of “literacy” about what is involved in rigorous
mathematics and why; this topic is perhaps the best and last opportunity. You
are not expected to memorize the proofs and regurgitate them on tests. You are
expected to pay attention to the lectures and read the books (especially Tolstov)
to fill in and reinforce the lectures. There will be a big homework assignment in
which you will be led to construct a proof of the summability theorem by making
minor changes in the proof of the pointwise convergence theorem that I'm about to
present. '

Onee we have built up an understanding of the Fourier theory, in the second
half of the course we’ll take for granted the similar theorems that apply in more

corplicated situations, without looking at the proofs at all.

Of course, much more important than the details of proofs is an understanding
of what the theorems say.
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POINTWISE CONVERGENCE

“Pointwise convergence” means that we are applying the standard (2nd-
semester calculus) definition of convergence of a sequence of numbers to the values
of our functions and series at each point x in the domain.

Definitions: The Mth partial sum of the Fourier series is
M
Su(z) =) [an cos(na) + by sin(nz)].

n=0

The sertes converges pointwise to f (a periodic function with period 2r) if
f(z) = lim Sy(z) forevery x.
M—oo
That is, for any z and for any € > 0 there is an N such that

|f(z) — Sm(z)| <e forall M > N.

The strategy of the proof will slowly emerge as I gather together some technical
machinery; please be patient.

sin (M + 3)a]

i E
Sll'].2

M
Lemma 1: 142 Z cos{nz) =
n=1

for positive integer M.

Proof: Use sin{a + b) = sina cos b = cos asin b repeatedly:
sin(M =+ § )z = sin(Mz) cos % + cos(Mz)sin % .

Subtract: 2
sin(M + %):c = 2 cos(Mz)sin 5 + sin(M — %)m

Treat the last term in the same way [note: M — 1 = (M — 1) + 1], getting
sin(M + )z = 2 cos(Mz) sin% + 2 cos{(M — 1)z sing +sin(M — 2)z.
Continue in this way until the frequency factor in the last term hits bottom:

T

M
sin(M + £)z =2 Z cos{nz) sin:;3 + sin 3

n==1
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Divide by sin ¢ to get the desired identity.

Remark: The deﬁomir_lator vanishes if ¢ 13 a multiple of 27, but so does the
numerator. We can define the function at such a point as the limit of the fraction
— which 15 1 + 2M by L’Hopital’s rule.

T o3 1 0 . 1
Lemma2:f Md_ﬁg:w:/ wdx_

3 X : xr
0 511 —r SIN

(In particular, these integrals are independent of M.}

Proof: Integrate Lemma 1:

x g 1 " =
/ Ln(_ﬁf[t_z)fi dz = / (1 +23° cos(mv)) dz
_r s 5 _ - n=1

= 27

by orthogonality. Since the integrand is even, half the integral comes from0 < z < 7
and half from —7 <z < 0.
1 T sin[(M + l)u]
Lemma 3: Sy(z) = o flz +u) i 2
(Here it’s understood that f is a function with period 27 and the coefficients in
the Fourier sum Sy are computed from f by the standard Fourier formulas, ay =

21_7r ffﬂ f(t)dt, ete.)

du.

Proof: Substitute the coefficient formulas into the series, taking care to use a
different letter for the integration variable:

Sur) =5 [ )i

+ % 3 [/W f(t)cosntdt cosnz + i f(t)sinnt dt sinnx]
P o
1 7 (1 M
== . f(t) 5 + nz;l(cos nt cosnz + sinntsin nm)} dt
1 7 -1 M
== - f(t) 3 + HZI cos[n(t — :c)]} dt
Let t = a2 + u:
1 [7 M
Su(z) = . _Trf(w +u)(1+2;cosnu)du,



vhich i what we want, according to Lemma 1.

ow it should be clear what we've been up to. We have rewritten the partial
sunoas an integral involving a fairly simple function, whose behavior as M — oo
wo cun easily study. The Dirichlet kernel,

sin(M + )]

2 Sin%

DM(u) =

3

has o rentral peak that becomes tall and narrow when M becomes large. Therefore,
gral in Lemma 3 samples the values of f(z + u) only for u = 0. So the idea
t when M — oo the kernel acts as a delta function, so that the integral

s'::-‘-:-}.ches flz).

More precisely, we will prove that if f satisfies certain conditions, then

. T 1,
Jim [ fla +u)Dav(u) du = 5 lim S + )
1

=5 lim f) = 3 1z +0)

0
) 1.
Jim /~ﬂ Flo +u)Dpr(w)du = 5 lim f(z + )

1
= wz-f(x —0).

Then Lemma 3 says that

Jim Sy(e) = [f(z - 0) + f(z +0)).

: significance of this equation depends on how f itself behaves at z. Consider
2 CR5eS!;

1. Continuity: f(z) = f(x — 0) = f(z 4+ 0). Then limpr_ o Spr(2) = f(z), which
1 what we've been trying to prove. The Fourier series converges to the value
of the function at z.

% Removable discontinuity: f(z —0) = f(a + 0), but either f(z) is undefined
or f(z) # f(z 4+ 0). {This might happen when f is originally defined only on
the open interval (0,7) and then we pass to its odd periodic extension.) In
this case the series converges to a value that fills in a hole in the graph of f
i a natural way. Often one then defines (or redefines) f(z) to be equal to
H{z+0) = f(z — 0). (Changing a function at one point, or a finite number of
points, can’t change the values of integrals involving the function; this includes
the Fourier coeflicients a, and b, .)
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3. Jump discontinuity: f(z — 0) # f(z +0), but both limits do exist. Then the
series converges to the average of the two limits, 1 [f(z — 0)+ f(z +0)]. Again,
without changing the series one can redefine f(z) to equal this compromise
value. This new f is not continuous, but the series does converge pointwise to
f(z) everywhere.

4. Worse discontinuities: On or the other of the one-sided limits does not exist.
Examples:

a) % (at 0);

.1
b) sin - (at 0);

1 if z is rational
' (anywhere).

o) e ={

0 if x is irrational

We will not consider such cases; the hypotheses on f in the theorem will exclude
them.

We are now ready to frame some hypotheses on f that will enable us to finish
the proof of the basic formula in the box above.

Definition: A function defined on the circle is piecewise continuous (or sec-
tionally continuous) if it has (at most) a finite number of jumps and removable
discontinuities, and no worse discontinuities. A periodic function is piecewise con-
tinuous if it has at most finitely many such discontinuities in each period. A function
defined on the interval (—m, 7) is piecewise continuous if it has at most finitely many
such discontinuities and the endpoint limits, f(m — 0) and f(—= + 0), exist. (If the
two endpoint limits are not equal, this counts as a jump discontinuity.)

Definition: f is piecewise smooth if not only f but also f' is plecewise con-
tinuous. (Thus f may have finitely many jumps and finitely many corners (jumps
of f'), but no vertical tangents (worse discontinuities of f').)

For example, |z| is piecewise smooth, but /z and 1/|z| are not.

Riemann—Lebesgue Theorem: If ¢(z) is piecewise continuousona < z < b,
then

b b
/ #{x)sin(kz)dz — 0 and / dz)cos(ke)de — 0 as k — oo,

where k is a real variable.
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I shall postpone the proof of this theorem until after we have used it in the
proof of the pointwise convergence theorem, to which we now return. The next
lemma looks rather obvious, but it needs to be proved.

Lemma 4: If f is piecewise smooth and z is a point of discontinuity of f or
f', then the right derivative of f at z, defined as

Hmf@+h%wﬂm+m’
hio h

exists and equals f'(z +0). [In f'(z-+0) the limit defining the derivative is taken at
a point to the right of z, and then that point is made to approach z. In the right
derivative, the difference quotient is set up right at « from the start.] Similarly, the
left derivative equals f'(z — 0). (Of course, if z is a point of continuity of f and
f', then the right and left derivatives are just equal to f'(z) and there is nothing
to make a fuss over.)

Proof: By the mean value theorem,

flz 4+ h) - flz +0)
1

Since f' is piecewise continuous, lki{IO:L f'(z+ k)= f'(z +0), QED.

= f'(z + k) for some k between 0 and A.

Now we can state and {almost) prove the key lemma from which, as I recently
explained, the pointwise convergence theorem follows.

Lemma 5: If f is piecewise smooth, then

M—oo

lim /ﬂ flz + uw)Dp(u)du = %f(:n + 0),

0

ﬂ}gnm _Trf(;z: +u)Dp(u)du = %f(ac — 0).

Proof: Obviously the two halves of the lemma will have almost identical proofs,
so we concentrate on the first half. By Lemma 2,

T oin( M 1
3ﬂx+m:ﬁlf‘ﬁg¥j?ﬁﬁwfw+0)
2 27 Jy sin 5

= / Dy (u)du f(z + 0).
0
So the lemma i1s equivalent to

sin(M+ %)u

21 sin %

gim [l )= fGa +0) du = 0.
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'

"hig integral has the form

/ﬂ d(u)sin(M + Hu du,

flz —;—u)—f(a:+0).

[’

It

1 ki3
o(u) = 7 siri

[SIH]

VA —
NNV

7 becomes large, sin[(M + 1)u] = sint oscillates increasingly rapidly. Eventu-
c{u) = ¢ (t J(M + %)) will vary so slowly over one period of the sine that.the
itive and negative parts of the integral will almost cancel. So we expect that
it will be 0, as required. Indeed, the Riemann—Lebesgue theorem guarantees
" ¢ is piecewise continuous. Well, ¢ is obviously piecewise continuous every-
- except possibly at u = 0. There, we have to examine each factor carefully.

ol el

u

2

/)
SIIl2

waches 1 as u — 0 (and the other zeros of sinlz‘— are outside the interval of
erest). Second,

f($+u)“f(:c+0)__)fr(

u

z+0}) asu|0,

sinee f is plecewise smooth {Lemma 4). Therefore, lim, o ¢{u) exists, and hence ¢
15 piecewise contlnuous.

S0, except for taking the Riemann-Lebesgue theorem on faith, we have finally
firished the proof of ...

Pointwise convergence theorem for Fourier series: If f has period 27
andl 16 plecewise smooth, then at each point x its Fourler series converges to

1
L{f(z = 0)+ £z +0)
o particular, it converges to f{z) if f is continuous at .

{lorollaries and other remarks:
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1. i f is given on (~m,7), then at the endpoints the series converges to

S (r = 0)+ f(=7 +0)].

2. Obviously the theorem holds for functions of arbitrary period 2L, or for Fourier

series on an arbitrary interval of length 2L. (Just change n to 2F in all formu-
las.) :

3. Sine series and cosine series on intervals of length L converge, for piecewise
smooth f. (Consider the odd or even extension.)

4. The theorem says nothing about what happens if f is not piecewise smooth.
The series may still converge in such a case. There are other theorems guar-
anteeing convergence for various slightly rougher kinds of functions. There
are also examples of slightly rougher functions for which the series does not
converge.

ProOF OF THE RIEMANN-LEBESGUE THEOREM

This theorem was stated earlier {after definition of “piecewise continuous™), and
the intuitive idea of the proof was indicated in passing in the proof of Lemma §.

We want to prove that

b
/ ¢{z) sin(kz)dr -0 ask — oo

(and the corresponding statement for the cosine, whose proof is the same). The
hypothesis is that ¢ is piecewise continuous on [, b].

The integral is the sum of finitely many (maybe just one) integrals over smaller
intervals where ¢ is continuous, so we need only to prove that the integral over each
such segment approaches 0.

a c d b

Without changing the integral from ¢ to d, we may replace ¢(c) by ¢(c+0) and ¢(d)
by #(d — 0) while treating that segment; so we can assume that ¢ is continuous on
the closed interval [¢,d] = I. (Note: The possibility of doing this is built into our
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assumption that the function has “no worse singularities than jumps”. It is not true
for all functions.) Therefore, we can use a famous (but hard to prove) theorem:

Lemma 6: A continuous function ¢ on a closed interval I is bounded and
uniformly continuous there. That is,

(a) There is a number M such that |¢(z)] < M for all z in I.

(b) For every € > 0 there is a § > 0 such that for all z and y in I,

{¢(x) — ¢(y)] < € whenever |z —y| < 6.
This is a theorem of general advanced calculus, not Fourier analysis, so we will
not prove it here.

Now look at

.

/cd gb(w) ;in(km) dz

We must show that it is small if k£ is large.

i E I | }

C I g IN-—1 d

Chop the interval into N small pieces, with endpointszp = ¢, z1,...,2y-1,75 = d,
as if we were forming a Riemann sum. Let £; be any point between z;,_, and z;.
Then

/C " gz) sin(ke) de

N
Z/ #(z) sin(ke) dz

< [::1 d(x) sin(kz) dz

) =

<[ 16) - 660 sintia) e

(8(2) — #(E) sin(h)d o+ [ 4(6,) sinin)da

t2

/ #(€,) sin(kz) do

= A+ B.
We will show that A and B can be made small simultaneously:
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ASY [ 1ote) - #eo) lsintio)] de
<30 [ 1ot - oo ds
N a
< ; /Z . m if the z; are close enough together.

(Lemma 6(b) says that given e, we can choose the z; close enough to make the last
inequality true.) But

N Ty d

€ € €
E / = / de = — .
— Jais 20d—¢)  2(d—¢) J. 2

This choice of the z; may make N very large, but N does not depend on k. That
1s, the same N works for all k, so we can assume that N is fixed as we study the

behavior of B at large k.

cos(kx;_1) — cos(kz;)
k

B< Zlé(&-)l

9 N
<2 ; [#(&:)]
< Z}iN (by Lemma 6(a)).

As k — oo we eventually have B < ¢/2 and hence A + B < ¢, which is what we
want to prove.
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THE GIBBS PHENOMENON

The pointwise convergence theorem says that, if you wait long enough (take
enough terms in the sum), the Fourier series will converge even at and nearby a
jump discontinuity. However, near a jump discontinuity any particular partial sum,
Sur, is not as good an approximation to the function as it 1s elsewhere. It wiggles
a lot, and actually develops “ears” or “overshoots” right next to the jump. This is
called the Gibbs phenomenon. The height of the overshoot is typically about 10%
of the size of the jump. The simplest example is provided by a square wave, such
as an odd periodic function that is constant on (0,7); see p. 66 of Powers.

Y
Sm

Why does this happen? Essentially, the wiggles in the partial sum are just the
wiggles in the Dirichlet kernel, Dys. Recall that

Sw(a) = | f(£) Daelt — ) dt.

—T

The central peak in the kernel “samples” f near x. As the kernel slides along the
t axis just to the right of z, it samples the graph just to the left of = first with the
central peak (causing the plunge of the graph of Sy down to the middle of the gap
in the graph of f), then with a large negative lobe {causing the overshoot), then
with a smaller positive lobe (causing the first wiggle), and so on. § # < 4 +Tg N‘*‘
S, A e A ot — : 4

Aot DM . J

7Y

Historical remarks: With luck, in the spring semester this lecture falls on Febru-
ary 11, the birthday of J. Willard Gibbs, the first great American theoretical and
mathematical physicist. Gibbs’s observation about Fourier series was a very minor
incident in his career. It appears in a letter to Nature in 1899 (volume 59, page
606). Gibbs had stepped into a controversy between the physicist Michelson and
the mathematician Love over whether the graph of a square wave should include
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the vertical segments usually drawn in physics and engineering texts (which clearly
can’t be part of the graph of a function). These earlier letters, which make interest-
ing reading, are in Nature 58, 544-545; 58, 569-570; 59, 200-201 (1898). Gibbs’s
final conclusion was that the limit of the graphs of the partial sums (as opposed
to the graph of the limit function) includes not only the vertical segments but also
short extensions of them — the limits of the Gibbs overshoots. See also the histor-
ical article by H. S. Carslaw, Bull. Amer. Math. Soc. 31, 420-424 (1925), which

says that the phenomenon was actually discovered by someone named Wilbraham
in 1848!

UNIFORM CONVERGENCE

More important than the Gibbs phenomenon is nonuniform convergence, which
always occurs near a jump. This is simply the problem we already noticed: Near a
jump in f, any particular partial sum of the Fourier series 1s not really a very good
approximation to f. Intuitively, Sas (which is continuous) has trouble becoming
steep enough to approximate the jump. This would be true even if there were no
Gibbs overshoot. '

Definition: Let {Sp{z)} be any sequence of functions defined on an interval

a < z <b. [Usually in applications the functions Sy will be the partial sums of a
series of functions:

M
miz) = Z wy(z).]

Su(z) converges uniformly to a limit function f(z) if

arg}%cb”(m) -~ SM(as)l —0 as M — oo.

This is very close to what we usually mean by saying that Sjs is guaranteed
to be a good approximation to f if M is big. That is, in practice this is a property
that you would very much like your approximations to have as often as possible!

To compare and contrast uniform convergence with pointwise convergence, note
that uniform convergence can be reexpressed thus:

For every € > 0 there is an N such that for all z in the interval,

|f(z) — Sule)| <e i M>N.

And remember that pointwise convergence means

H Ty



For every x in the interval and for every e > 0 there is an N such that

|f($) —S'M(:I:)l <e ifM>N.

The crucial difference is that in the second case, N is allowed to depend on z, while
in the first case, the same N works for all z (but depends on ¢, of course). Therefore,
if a sequence or series converges uniformly, then it also converges pointwise; but it
may converge pointwise without converging uniformly.

[The same sort of distinction is involved in the definition of “uniform continu-
ity” (see Lemma 6(b)). Conpare that with the definition of ordinary “continuity”
in your calculus textbook.]

max 9}

/i/ \1_”_
s, S1o max Sio
g I e R
100
% max 5190

z z
pointwise convergence to f(z) = 0 uniform convergence to 0

An example of a sequence that converges pointwise but not uniformly is
Su(z) = Maze=M=",

Pointwise, Sp(z) — 0 for all z, since the decaying exponential will eventually
overcome z or any other power. But for a given M, consider z = 1//M: Then
Sum(z) = VM e, which grows with M. Thus the maximum deviation of Smu(z)
from the limit function, f(z) = 0, does not go to 0.

gA iM‘}LM
ekl M
S~ x

Why do we care? For one thing, uniform convergence is a hypothesis in many

useful theorems. For example, ...

Theorem: A uniformly convergent series of continuous functions can be inte-
grated (over a finite interval) term-by-term:

b oo 0o b
an(:ﬂ) dz = Z/ wy(z) dr.
n=1} n=1"¢%
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Proof: Let f(z) =3~ wp(z)dz, and let {Sas} be the partial sums, as usual.
Then the theorem can be restated this way:

b b
-/;f(:c)da: = n}inoo/a Sz} de.

But
‘/fdm—fSMdm gf]f—SMidm
< (b —a) max(f — Su)
—0.

To see that the uniformity 2assumption is needed in the theorem, observe that
our example Syr(z) = Mze™M*" violates the conclusion. We have

[f(;c)aa;e/ﬂloezm:o,

1 1
/ Su(z)dr = f Mze=M=" gy
0 0

but

1 M
:—/ et dt
2 Jo
~M
-i-4
— 2 #0.

(If you integrate to oo instead of 1, you get exactly  ; the area under the curves is
independent of M.)

Now let’s get back to Fourier series. It is easy to see that if f is discontinuous,
then uniform convergence of its Fourier series is impossible, because any continuous
approximating function Sy “needs time” to cross the gap. There will always be
points near the jump point where the approximation is bad. Taking M larger makes
this bad interval narrower, but the magnitude of the error inside the interval is not
improved — it always gets as large as half the jump. £

-
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In fact, as a general theorem, a discontinuous function can’t be the uniform
limit of a sequence or series of continuous functions:

Theorem: If a sequence of continuous functions Sy converges uniformly to f,
then f is continuous.

Proof (THE FAMOUS €/3 ARGUMENT): Choose M so large that
€
argf,%cb[f(m) — Su(z)| < 3
Then choose § so small that
|SM(CB) - SM(CBQ)I < -;; whenever |z — zo| < &.

Then for |z —zg| < §, | f(z) — f(xo)] is less than e. This shows that f is continuous
at z¢. Here is a sketch of the worst possible case:

b \)5\“'\ ™ \,35”\‘

x, ke § >

Now we will prove two theorems about uniform convergence of Fourier series.

Lemma 1 (Weierstrass M-test): If |wn(z)] < M, for all z € [a,b], and
5 o My converges, then Y. wn(z) converges uniformly on [a, b].

The proof of this lemma is a slight extension of the proof of the “comparison
test” in the series chapter of your calculus textbook.

Uniform Convergence Theorem 1: If the numerical series

Z 'anl + |bn|
n=1

converges, then the Fourier series

Z a, cos(nz)+ Z by, sin(nz)}
n=>0 n=1

converges uniformly on [—, 7] (and hence on the whole real line) to some function
flz) of period 2.
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Proof: |a, cos(nz) + b, sin{nz)| < |as|+ |b.|. Apply Lemma 1.

Lemma 2 (Bessel’s Inequality): Let ¢(z) have Fourier coefficients «, and
B, . Suppose that ["_|4(z)|? dw < oo (which will certainly be true if ¢ is piecewise
continuous, hence bounded). Then

20 + Z(IanPAL 18.1%) < %/ |6(2)|? dz < oo.
: n=1 —%

The proof of this lemma is postponed until we discuss “convergence in the
mean”.

Uniform Convergence Theorem 2: If f (a function of period 27) is con-
tinuous and also piecewise smooth, then its Fourier series converges uniformly —
to f. [Recall that the graph of such a function may have corners, but no jumps.]

Proof: Since f is continuous, we can integrate by parts this way:

b =~ f_ " f(a) sin(ne) dz
= - -371- [f(2) cos(nz)] zz:r + % f'(z) cos(nz)dz.

-7

(We'll come back later to see why continuity of f is crucial here, and why continuity
of f' isn’t.) The endpoint term is 0 because of periodicity and continuity. To study
the other term, we let f’ be the ¢ in Lemma 2, so that we get b, = o, /n. A similar
calculation ylelds a, = —f,/n for n # 0. Now

1)’ , 2 1
0< |an|_; :an_g|anl+}:§1

50

|oen| 1 2 1
< - —
n T 2 & ¥ n?
Similarly,
I)Bnl 1 2 1
< il
n — 2 Pn F n?
But
Z(anz +8,2) converges (by Lemma 2, Bessel),
e |
and

= 1
Z 3 converges {(well known).

n=1
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Therefore
o0
Z(|an] + [ba]) converges (comparison test).
n=1

Therefore, the Fourier series converges uniformly, by Theorem 1.

To summarize the key ideas of this proof: (1) Piecewise smoothness implies
that f' has Fourier coefficients that fall off at large n. (Bessel’s inequality gives us a
stronger conclusion in this direction than the Riemann-Lebesgue theorem did.) (2)
Continuity allows an integration by parts that shows that the Fourier coefficients
of f are (roughly speaking) 1/n times those of f. This implies that the coeflicients
of f fall off fast, so that Theorem 1 applies.

Conversely, if the coefficients fall off fast enough, then f is continuous, because
of Theorem 1 and the €/3 theorem. It is a general principle in Fourier analysis
that smoothness properties in “z-space” (such as continuity and differentiability)
are correlated with various degrees of rapid falloff at infinity in “n-space”.

Here is an example that shows what goes wrong with our integration by parts
when f is not continuous. Let

0 ifzr<i,
1 ifz>1.

)= {

Then f'(z) = 0 except at z = 1, where it is undefined. This tempts one to say that
the integral of f' is defined and equals 0. We now see that

" flz}yde =7 —1

but integration by parts gives

_T; flz)dz = :cf(x)[ﬂ - /W zf'(z)dx

-1

=7 — 0,

which is the wrong answer. This paradox can be resolved by saying that f' includes
a term proportional to the delta function at the jump (here §(z — 1)). But then
f' does not satisfy the hypotheses of Bessel’s inequality, so the proof of Theorem 2
does not apply to it.

Corollaries: Like the pointwise convergence theorem, the (second) uniform con-
vergence theorem has some obvious extensions.

1. The period can be arbitrary (2L instead of 27).
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4,

2. 1f f is defined on a finite interval, say [~L, L}, and satisfies

f(=L+0) = f(L-0)

i addition to being continuous and piecewise smooth, then its Fourier series
converges uniformly (because f has a continuous periodic extension).

A similar theorem applies to the cosine series on [0, L], with no extra restrictions
at the endpoints (since the even periodic extension is automatically continuous
ot the endpoints).

For the sine series there is a similar theorem, but this time one needs

f(0) =0=f(L)

to have a continuous odd extension.
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A DIVERGENT FOURIER SERIES

%o far our convergence theorems have assumed that f is piecewise smooth
differentiable except possibly at isolated points). This assumption is ac-
too strong (not necessary for convergence). But continuity by itself is not
; ot for convergence. That is, there are periodic functions that are continu-
ons everywhere, but whose Fourier series fail to converge at certain points. (The
“unctions are very wiggly near those points — having infinitely many maxima and

Hxample: The function

2
oo 2%

f(z) = Z Z kzlm [cos (2]‘2"'1 - m) z — cos (2k2+1 + m) 3:]

k=1 m=1
hias a Fourler series that diverges at @ = 0.

Heferences: R. L. Jeffery, Trigonometric Series, pp. 20-23; A. Zygmund,
onometrie Series, pp. 298-301.

As you can guess from this example, bad functions like this are hard to find. If
: can write down a simple formula for a bounded, continuous function, its series

i srobably OK.

To understand this example, recall that “not converging” doesn’t necessarily
mean going to infinity. For example, the numerical series

(e 9]
-1 =1-14+1-14+1-1+4--

n=0
s divergent. Its partial sums Sy = Z:{:O(—l)” are

So=1, S5i1=0, Sy=1, S5 =0,....

= group the terms in a special way, we may get a limit — but this result is not
anicue: If we look only at the even partial sums, we would conclude that the series
comverges to 1, but if we look only at the odd ones, we would get the answer 0.

In the Fourier series example, when z = 0 each inner sum (over m) contains
veve blocks of terms, first positive and then negative. The signs of the terms go
snmething hike this:

++—— |+ttt - ==+
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If we add up all the cosines one by one, the partial sums oscillate forever; this is
what it means to say that that Fourier series diverges. But if we add up by blocks,
as the double sum directs us, then the signs compensate within each block and the
sum of blocks {sum over k) converges. That is, a certain subsequence of the partial
sums of the divergent Fourier series converges (uniformly) to a continuous function
f(z), which has the original series as its Fourier series. (For proof of these claims
see the references.)

SUMMABILITY

There are various ways of defining the sum of a series that doesn’t literally
converge. They do not always agree; we are defining the sum, not discovering a
preexistent fact. The definition that has proved most useful for Fourier series is
called Cesaro summability or convergence of arithmetic means.

The Nth arithmetic mean 1s the average of the first N partial sums:
p Mol
ON = — E S .
N M=0
For the numerical example Y ~- (—1)" we have

14041404
- N

o g
N 2

Fejér’s Theorem: If f is piecewise continuous, the arithinetic means of its
Fourier series converge {even if its partial sums don’t).

You will be guided through the construction of a proof of this theorem in a
homework assignment. A fuller statement of the theorem will appear there.

Even if the Fourier series does converge, the sequence of arithmetic means may
converge faster, and therefore the Cesaro summation method will be of practical
value in numerical work. This often happens when the coefficients a, and b, fall
off slowly at infinity (say like 1/n). The partial sums oscillate, but the averaging
process smooths the oscillations out. On the other hand, if the coefficients fall off
fast (like 1/n*, or e™™), or if you know that all the terms are positive, then the
process of taking arithmetic means will slow the convergence down, so it should be
avoided.

CONVERGENCE IN THE MEAN

The “mean” referred to here is an averaging over z, not over M as in Cesaro
N * e . . 3
summation. In modern mathematical writing, this kind of convergence more of-
A
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ten called “convergence in L?” or “convergence in Hilbert space”. It is the most
important type of convergence for quantum mechanics.

To obtain uniform convergence we had to consider a smaller space of “nice”
functions than the one where pointwise convergence holds. This time we will move
in the other direction, working with a large space of functions (called L?(—=, 7))
that includes the piecewise continuous functions on [, 7] and many others besides
— including some that are unbounded.

Definitions: The function f is square-integrable over the domain [—, 7] if
" 2
17 = [ 1P de < .
T
(One also says “f is in L*”.) The number || f|| is the norm of f.
Example: The function f(x) = }z|7¢ is square-integrable if ¢ < 1. Note that
if € > 0, this function is not piecewise continuous by our definition, because it

approaches co (is unbounded) as z approaches (. The function is not defined at 0,
but that does not affect the existence of the integral.

Theorem (Cauchy—Schwarz inequality): If f and g are square-integrable,
then

f@)*g(=)dz = (f,9) < | flllgl] < oo.
(The * is included to allow complex-valued functions. It can be ignored if f is real.)

A measure of the “distance” between two functions (real-valued ones, for no-
tational simplicity) is

1F —all® = 11" +llall® — 2(f, 9)-
Written out, this is

@) —g@Pde = [ s@rdn s [ g@rde-2 [ st

-7 i

Suppose f is square-integrable and we want to approximate it by a finite sum
of sines and cosines:

M
flz) = Ap + E(Am cos(nz) + By sin(nz)) = gu(z).

n=1

Which approximation is the best? Well, that depends on what you mean by “best”;
a reasonable definition is “closest to f in the distance defined by the norm”. That
is, we pose the problem of minimizing

By = ||f — g

M T 3



ing M fixed, but varying the As and Bs). The E stands for “error”.

{3ne finds (see the textbooks for details) that the best g is the one for which.
Ay = an and By = b, — that 1s, gar = Sur, the truncated Fourier series of f.

in particular, o s is a worse approximation in the mean than Sy, even though
= cases it may be a better approximation at most points. This gives a new
intion of the Gibbs phenomenon: It is the price Sys pays for not staying away
see the hmit function any longer than necessary.

" £

0\

The actual minimum value of Ejs (attained when gpr = Spy) turns out to be

M
min By = [ = Sull = 117 = 7 206" + Yo + 2]

n=1

ace this number can’t be negative, we see that

M T
1S ]2 = [2 3 (@l + bf)] <17 = [ ) da.

n=1

function is complex, we should put absolute value bars around f(z)} and each
fie 18 and bs here.) This is Bessel’s inequality, already stated as Lemma 2 in the
ssion of uniform convergence.

Now as M -+ oo there are two logical possibilities:

1. min Ep — 0. Then we get Parseval’s equation:

o0 1 "
2 2 2y 2
2a¢° + E_](an + b, ) = ;1" . f(w) dz.

in this case we have (by definition of Fy) that limpr oo || f -~ Sap|| = 0. That
i3, the series converges to f in the sense that the distance between the partial
sum and f goes to 0. {Recall that, written out, this distance is the square root
of a certain integral.) In this situation one says that the series converges “in
the mean” or “in the topology of Hilbert space”.

7. min Epr approaches a limit greater than 0. In this case Sps does not converge
tz: f; there 1s a persistent error.

A7 i 6



Although we can’t prove it here, for Fourier series Alternative 1 holds:

Mean convergence theorem: If f is square-integrable, then its Fourier series
converges to f in the mean, and Parseval’s equation holds.

Notice that Alternative 2 would occur if we left some terms out of the series
systematically. Suppose we didn’t know anything about cosines and tried to write
a Fourier series on the entire interval [—7, 7| containing only sines:

f(z) z Z b, sin(nz).

Then whenever we had a function f that was not odd, our series would converge to

the odd part of f,

f@) = f(=2) _ <~y
= ;bn sin{nz).

The error estimate would converge to the norm of the missing even part:

2 2

M o0
M%im ”f - Z b, sin(nz) Z ay, cos(nz)
e n=1 n=1

-[.

The failure of the series to converge is due not to a pathology of the function, but
to the fact that our set of basic functions is incomplete.

2

f@) + f=a)*

2

[Please interpolate here two pages of old, typewritten notes.}
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Math. 312 COMPLETE SETS OF FUNCTIONS (AN EXAMPLE)

Consider a line segment, equipped with two coordinate systems related by

= 2y7— ol .

|

™

y=20

I

X = -7

o 4+ mos

The functions {sin nx} (n =1, 2, 3, ...) are the same, up to sign, as the

functions {sin my} =2, 4, 6, ...). Their graphs look like
! /'_\ /\\/‘/\\/l , etc.
sin x = —'sin 2y gin 2x = sin 4y

They constitute an incomplete set, because the only functions which can be
expressed in terms of them are the functions which are odd with respect to
reflection about the midpoint of the line segment (i.e., odd in the variable x).

We can form a complete set by adding the functions {cos mx} (n =10, 1, 2, ...).
Their graphs look like

a RN A N4
AU VARV,

cos Dx =1 cos X cos 2x

etc. Every (square-integrable) function on the line segment can be expanded in
terms of these functions (the two sets together). This is the ordinary Fourier
series in the variable x. 1Its extension to the whole line represents a function
with period equal to the length of the line segment.

Alternatively, we can form a complete set by adding to the set {sin my} (m even)

the functions {sin my} (m =131, 3, 5, ...). These are the same, up to sign, as
the functions {cos (mx/2)} (m=1, 3, 5, ...). Their graphs locok like

|/\ ’ 1/\ | /\w
\/

X _ Ix ;
cos & = sin vy - cos 5 = gin 3y
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Every function on the line segment can be expanded in terms of these functions.
This is the Fourier sine series iIn the variable vy . 1Its extension to the whole -
line represents a function, with period equal to twice the length of the line.
segment, which is odd with respect to reflection about the endpoints of the
segment (odd in the variable y , and also, as it happens, in the variable

usTw -y ).

In each case the added set of functions served as a basis for expanding all the
functions that are even in x (i.e., even with respect to the midpoint of the
segment). Geometrical analegy: A basis for expanding all vectors in the x-y
plane is provided by the unit vectors i and Jj . An alternative basis consists
of the vectors

'—1 5 ":1"_
1t o= 75(1 + ) and 3 73{3 1y .
A
N, A
J /
0
\ 7

Either set can be added to {k} (the set consisting of the unit vector in the
z direction) to form a basis for expanding all vectors in three-dimensional
space.
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FOURIER ANALYSIS AS LINEAR ALGEBRA
(FUNCTIONS AS VECTORS)

I hope to convince you that the footnote on p. 47 of Powers is wrong: the word
“not” should be deleted!

Look at these analogies between L*(—m, 7) (the space of square-integrable func-
tions on the domain —7 < x < 7) and R? (the familiar space of three-dimensional
vectors).

Concept R3 L2
vector point, & = (zy,x9,23) function, f(x)
index, 7 =1,2,3 variable, x
norm (length) |Z]| = \/ﬂrl2 + z? + 24? £l = A/ fjﬂ. f(z) de
inner product 7= E TiY; (f,g)= f(z)g{z)dz
{scalar product) =1 -
@t =z-2 IAI* = (£, £)
orthogonal set  {€;}, where {#;(2)}, where
€& =0ifi#73 {(Pisd;) =0ifi#j
Example: {cos(nz)}
3 00
complete set Every & = Z ci€; ' Every f(z) = Z eid;(z),
(e; are nunge}rs) convergence inzTnlean

Remark: If the ¢€; or ¢; are orthogonal, they are linearly independent and hence the
c; for a given vector are unique. In fact,

) 1
Cizw(¢i=f>-

A set that is both linearly independent and complete (spanning) is called a basis
for the vector space involved.

dimension Every basis contains exactly Every basis contains infinitely
three vectors €; . many functions ¢, .
3 o0
2 2122 2 2 F 12
Parseval 7 =) el AP =D eIl
equation i—1 i—1

(for a basis!)

Remark: One often simplifies these equations by choosing l€;] = 1 or ||¢;]] = 1.
However, in our notation for Fourier series we have

m

| cos(na)|? = / cos(na) dz = 7 = || sin(na)[?,

-
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|| cos(02)||* = / ldz = 2.

-

Bessel If the set is orthogonal but not complete,
inequality then the best approximation to
z f
of the form
N ' N (or 2N+1)
Ty = Zc,‘é',; (N = 1,2) gN = Z c,'gbi(:r:)
i==1 =1
— lL.e., the one that minimizes the distance
ERS Y N~ anll
— satisfies
N N
- 12 21212 12 2 2 2
Ent? =) el <12 law|® =) elleal® < 11£17
=1 : 1=1
Remark: If €, and €; span a plane, then 7y = Ele ci€; 1s the point in that

plane which is closest to Z. This point is the intersection of the plane with the
perpendicular dropped there from #. The vector connecting &, to Z'is I Ts = c3€3 .
Here is an example with ¢ = 0:

Similarly, the sine terms of the Fourier series of f give the closest approximation
to f by an odd function, and the remainder is an even function orthogonal to it.

Coeflicients of i = = e; c; = (‘154‘:);)
the closest ap- |_e,3l ||‘£:”
proximation - |m|| SOIS 4 _ f_.,, flz)pi(z) de
7 =
' fjﬂ ¢ (z)? dz

In the Fourier case, this becomes

fnf z) cos(nz)dz ™
= ffn- (stz(nft) — — _17; i f(z) cos(nz) dz,

an

etc.
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. Show that opn(z) =

athematics 312 _ Fall, 1993

SPECIAL ASSIGNMENT DUE. FRIDAY, OCTORBRER 29

Prove Fejér’s Theorem:

Let Spr(z) be the partial sums of the Fourier series of a piecewise contin-
uous periodic function f(z). Let on(x) be the arithmetic means,

on(z) = 5 1S0(z) + $1(2) + -+ + Sy (2)]

Then as N — oo, oy(z) converges pointwise to Lz +0)+ f(z —0)].
Furthermore, if f is continuous, then on(z) converges uniformly to f(z).

proof of this theorem is very similar to the proof of pointwise convergence of

Show that NZ_E [(n+ 1) u] sin” (%)
. ow a Sin n Sl U| = ———
= 2 sin (%)

Hint: Use 2sin‘z=1— cos(2z) .

1 sin (1)
o | 0 sy

(Yes, the denominator involves sin in (1) but sin? in (2).)

™ sin? (—N-—’-‘-)

du.

1 1
3. Show that ——— — 2y = =
© 2N /ﬂ sin? (—%) 2

Hint: Set f(z) =11in (2).

Show that to prove the pointwise convergence it 1s sufficient to prove

1 sin” (M) B
Nh_xrnoogm-—— [f(£+u) ($+0)1Wdu“0

and a similar statement for f(z —0}.

. Show that (given €) if § > 0 is sufficiently small, then for all N

it (5 gl < €

I](Jg)E Slnz(g) 2

o [t 40— ste +0)

1 f? o



6. Show that (given ) if IV is sufficiently large, then

™ | sin? (M2}
= [f(m+u)—f(:c+0)]—.-a(—§)ldu <

Tn s (

12(33) =

DO

7. Show that if f is continuous everywhere, the § and N in (5) and (6) can be
chosen to be the same for all z, and the convergence of the oy is therefore
uniform. Hint: Use “Lemma 6” from the proof of the Riemann-Lebesgue
theorem.
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Appendix C

Commentary on the Michelson—-Love—Gibbs Letters
(Nature, 1898-1899)

1. MICHELSON, OCTOBER 6

Michelson was one of the most distinguished experimental physicists of his era,
now most famous for the Michelson—Morley experiment that later was interpreted
as evidence for special relativity.

Paragraphs 3-5: Michelson quotes from Byerly’s book the Fourier series of a
sawtooth wave and a description of its graph. The function has a jump discontinuity
at z = . For clarity Michelson makes a change of variables so that the discontinuity
appears at the origin, e = 0.

Paragraph 6: He argues that for a fixed, but arbitrarily large, n, ¢ can be
chosen so small that all n terms can be approximated by the first terms of their
power series. Thus each term is equal to =, and the partial sum is equal to ne
(approximately).

Paragraph 7: He concludes, correctly, that the graph of the partial sum near
the point of discontinuity is approximately a steep straight line {with slope opposite
to that of the main part of the graph). However, either Michelson or the typesetter
made a mistake here: The equation —y = nx surely should be —y = n{z — =) (or

—1Y = nE).

Paragraph 9: This is a continuation of Paragraph 8: in that paragraph he has
concluded that some function (actually, the nth partial sum) has a derivative at
e = 0, and hence a tangent line.

Michelson is failing to distinguish between the pointwise convergent infinite

sum and its partial sums. This is a major source of the confusion in the next two
letters.

2. Love, OCTOBER 13

Love later wrote a famous treatise on hydrodynamics, so he was not unfamiliar
with “applied” mathematics.

Love has difficulty understanding the details of Michelson’s remarks, so instead
of rebutting them individually, he quotes them verbatim (including the typo!} and

172



prrsents the standard, correct mathematical description of the convergence of the
: . followed by a list of the common errors in reasoning that he presumes are
infeoting Michelson’s thinking.

Alag, they are still talking past each other.

3. MICHELSON, DECEMBER 29

Puaragraph 1: Michelson wants to study a particular partial sum (a fixed n)

and investigate its behavior when € (now renamed z) is close to zero. Love wants to
consider a fixed, nonzero x and take n to infinity, obtaining the sum of the infinite
serics. What Michelson says is correct for the partial sum, but irrelevant to the sum

ol the whole series.

Paragraph 2: For the partial sum, the “sawtooth” description is accurate only
for @ > w/n. Michelson therefore sees Love’s remarks as irrelevant to Michelson’s
point.

Michelson’s problem seems to be that he has what a historian of philosophy
would call *a horror of the actual infinite”. He has no concept of the sum of the
infinite series as a single, finished, mathematical object; he thinks of the series as just
the scquence of its partial sums. To put it more positively, although he expresses it
in » confused way, he has an intuitive understanding of the crucial point that the
limits ) _

lim lim and lim lim

=0 n—oo 1n—00 £-—0
are not the same thing. Tor some reason he thinks that only the second limit is
important; of course, the theory of convergence of Fourier series is about the first
one.

4. G1BBS, DECEMBER 29

Gibbs attempts to mediate the dispute. The last paragraph of his second letter
is an excellent summary of this first letter: Love is talking about the graph of the
linit of the partial sums, while Michelson is talking about the limit of the graphs
of the partial sums.

5. LovE, DECEMBER 29

Love gives a better explanation (than in his first letter) of the motivation and
conceptual background of the standard mathematical treatment of the convergence
of infinite series of functions. It is a theory about functions, not about curves;

173



curves arise only for purposes of illustration. (And how much easier these letters
would have been to understand, if Nature had been able and willing to print some!)
For that reason, Love considers the graph of the limit to be the worthwhile object
of discussion, and the limit of the graph to be relatively uninteresting.

6. GiBBs, APRIL 27

The final paragraph has been discussed above. In the earlier paragraphs Gibbs
announces his [re]discovery of the “Gibbs phenomenon”, described in the context of
the “limit of the graph” concept.

The Gibbs phenomenon was actually discovered in 1848 by someone named
Wilbraham, who was looking at the square wave instead of the sawtooth. The
history is described by H. S. Carslaw, Bull. Amer. Math. Soc. 31, 420-424 (1925).

J. W. Gibbs (the “Willard” was not part of his surname, as Love appar-
ently thought) could fairly be described as a physicist, mathematician, or chemist.
His main accomplishments were (1) building the foundations of thermodynamics
and statistical mechanics as applied to physical chemistry, and (2} formulating
3-dimensional vector caleulus in essentially the way it is taught to and used by
physicists and engineers today. The Gibbs phenomenon was a minor episode in his
career, '
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