
Math. 412 12 December 2006

Final Examination – Solutions

Calculators may be used for simple arithmetic operations only!

Some possibly useful information

Laplacian operator in spherical coordinates ( θ = polar angle, φ = azimuthal angle ):
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Spherical harmonics satisfy[
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Y m
l (θ, φ) = −l(l + 1)Y m

l (θ, φ).

Legendre’s equation:

1
sin θ

d

dθ

(
sin θ

dΘ
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)
+ l(l + 1)Θ = 0 has a nice solution Pl(cos θ) .

Bessel’s equation:

∂2Z

∂z2
+

1
z

∂Z

∂z
+

(
1− n2
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)
Z = 0 has solutions Jn(z) and Yn(z) .

Airy’s equation:
∂2y

∂z2
− zy = 0 has a nice solution Ai(z) ;

Ai(z) is bounded and oscillatory as z → −∞ and decreases very fast as z → +∞ .

1. (40 pts.) Solve Laplace’s equation in the exterior of a sphere,

∇2u = 0 for R < r < ∞ , u(R, θ, φ) = f(θ) sin(2φ) .

Skip steps if you know the answer. (Note: Haberman would write (ρ, φ, θ) for (r, θ, φ) .)
Knowing that the spherical harmonics were invented precisely to solve this type of problem, we
dispense with the (θ, φ) separation and look for solutions of the form

u(r, θ, φ) = R(r)Y m
l (θ, φ)

Then the top two of the useful formulas yield
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r2
R = 0 .
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The independent solutions of this equation are rl and r−(l+1) , and it is the second of these that is
well-behaved outside the sphere.

So the full solution is

u(r, θ, φ) =

∞∑
l=0

l∑
m=−l

cl
mr−(l+1)Y m

l (θ, φ) .

Because Y m
l has a factor eimφ , to reproduce the data function sin(2φ) we will need only m = ±2 ,

and hence only l ≥ 2 :

u(r, θ, φ) =

∞∑
l=2

r−(l+1)[cl
2Y

2
l + cl−2Y −2

l ] ,

where

f(θ) sin(2φ) =

∞∑
l=2

R−(l+1)[cl
2Y

2
l + cl

−2Y
−2
l ] .

The spherical harmonics are defined to be orthonormal, so

cl
±2 = R+(l+1)

∫ π

0

dθ

∫ 2π

0

sin θ dφ Y ±2
l (θ, φ)∗f(θ) sin(2φ).

(As usual, the entire integrand is understood to be inside the integrals; the differentials are next to
their respective integral signs only for clarity.)

By introducing the formula for Y m
l in terms of eimφ and an associated Legendre function

Pm
l (cos θ) we could evaluate the integral over φ explicitly. However, we would then need to look up

the normalization factor for the Legendre function, so let’s stop here.

2. (40 pts.) By the method of your choice, solve the wave equation on the half-line,

∂2u

∂t2
=

∂2u

∂x2
for 0 < x < ∞ , u(0, t) = 0 , u(x, 0) = 0 ,

∂u

∂t
(x, 0) = g(x) .

Fourier method: By separation of variables (or going directly to a Fourier sine transform) we arrive
at

u(x, t) =

∫ ∞

0

sin(kx)[a(k) cos(kt) + b(k) sin(kt)] dk .

Since u(0, t) = 0 , a(k) = 0 . We have

g(x) =

∫ ∞

0

b(k) sin(kx)k cos(kt) dk .

Therefore,

b(k) =
2

πk

∫ ∞

0

sin(kx)g(x) dx .
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D’Alembert method: We must have

u(x, t) = B(x− t) + C(x + t) .

This gives
0 = f(x) = B(x) + C(x) ,

g(x) = −B′(x) + C′(x) .

Write G(x) for an arbitrary antiderivative of g : G(x) = −B(x) + C(x) . Then

u(x, t) = 1
2 [G(x + t)−G(x− t)] =

1

2

∫ x+t

x−t

g(z) dz .

This makes sense if g is defined for all z , negative as well as positive. We can match the Dirichlet
boundary condition by taking the odd extension of g (or the even extension of G ): g(−z) = −g(z) .
(In more detail, we must have 0 = B(−t)+C(t) , which is consistent with formulas above if and only
if G is even and g is odd.)

3. (40 pts.) Consider
∂u

∂t
=

∂2u

∂x2
− xu on 0 < x < ∞ with the conditions u(0, t) = 0 and

u(x, 0) = f(x) :
(a) Solve by separation of variables. (The spectrum of eigenvalues will be discrete. You

can’t solve for the eigenvalues but you can write down an equation that determines
them.)

Try usep = T (t)X(x) , getting
T ′

T
=

X′′

X
− x = −λ.

Then T = e−λt and
d2X

dx2
− (x− λ)X = 0.

This is Airy’s equation with z = x− λ , so the eigenfunctions (not normalized) are

φn(x) = Ai(x− λn) .

(The other Airy function is not admissible because it increases very fast as z → +∞ .) Finally, to
satisfy the boundary condition we need

0 = φn(0) = Ai(−λn) .

There is a discrete, infinite list of solutions of this equation, since Ai is oscillatory at negative
arguments.

Now the solution of the problem is

u(x, t) =

∞∑
n=1

cn Ai(x− λn)e−λnt .

The coefficient formula is

cn =

∫∞
0

f(x)Ai(x− λn) dx∫∞
0

Ai(x− λn)2 dx
.

The denominator can be simplified to
∫∞
−λn

Ai(z)2 dz .
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(b) Write the solution in Green-function form. (If you don’t know the answer to (a), just
introduce eigenfunctions φn(x) and eigenvalues λn , but explain how to normalize the
eigenfunctions.)

Rewrite the coefficient formula with y in place of x as the variable of integration; plug into the
solution formula and reverse the order of integration.

u(x, t) =

∫ ∞

0

G(x, y, t)f(y) dy

with

G(x, y, t) =

∞∑
n=0

Ai(x− λn)Ai(y − λn)e−λnt∫∞
−λn

Ai(z)2 dz
.

4. (Essay – 20 pts.) For ONE of the three previous problems —
(a) Classify the partial differential equation as elliptic, parabolic, or hyperbolic. (Remem-

ber to make clear which of the three equations you’re talking about!)
1: elliptic 2: hyperbolic 3: parabolic

(b) Explain why we care: List some consequences of the classification for the equation
you chose. (What does it tell you about proper boundary conditions, smoothness of
solutions, . . . ?)

[Please see Qu. 6 of the final exam solutions for Fall 2000 for a list of properties of the three types of
equation.]

5. (60 pts.) Do TWO of these. (Extra credit for all three.)
(A) For a Sturm–Liouville problem of the form

d

dx

[
p(x)

dφ

dx

]
+ q(x)φ = −λφ , φ′(a) = γφ(a) , φ(b) = 0

(with a < x < b and p(x) > 0 ), find conditions on q and γ that guarantee that
all the eigenvalues λ are positive. Hint: Integrate by parts; the weight function is
r(x) = 1 .

Assume that φ is a solution. Then

λ

∫ b

a

|φ(x)|2 dx = −
∫ b

a

φ(x)∗
{

d

dx

[
p(x)

dφ

dx

]
+ q(x)φ

}
dx

= −φ(b)∗p(b)φ′(b) + φ(a)∗p(a)φ′(a) +

∫ b

a

p(x)φ′(x)∗φ′(x) dx−
∫ b

a

q(x)|φ(x)|2 dx

= γp(a)|φ(a)|2 +

∫ b

a

p(x)|φ′(x)|2 dx−
∫ b

a

q(x)|φ(x)|2 dx .

Thus λ will be positive if all the terms on the right are nonnegative and at least one of them is
positive. This is guaranteed if

γ ≥ 0, q(x) ≤ 0,

and φ′(x) is not identically zero. (If this last condition fails — i.e., φ is a constant — then λ could
be 0 . That actually happens for the Neumann problem leading to Fourier cosine series, as we well
know.)
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(B)
(a) What is the Parseval equation (the formula for

∑∞
n=1 |bn|2 ) associated with the

Fourier sine series on the interval (0, π) ? You probably don’t remember the nu-
merical coefficient, so you should rederive it from the orthogonality relation of the
functions {sin(nx)} .

The series is

f(x) =

∞∑
n=0

bn sin(nx) .

The orthogonality relation is ∫ π

0

sin(nx) sin(mx) dx =
π

2
δnm .

Therefore, multiplying two copies of the series and integrating, we get

∫ π

0

|f(x)|2 dx =
π

2

∞∑
n=0

|bn|2 .

(b) Given (don’t rederive it!) that the Fourier sine series of f(x) = x on (0, π) is

x =
∞∑

n=1

2(−1)n+1

n
sin(nx) ,

use the Parseval equation to prove that
∞∑

n=1

1
n2

=
π2

6
.

In this case we have ∫ π

0

x2 dx = 1
3x3
∣∣π
0

=
π3

3
,

and from (a) this equals

π

2

∞∑
n=1

4

n2
.

Dividing by 2π we get the desired equation. (This famous number is called ζ(2) , ζ being the
Riemann zeta function.)

(C) Solve the wave problem (Qu. 2) by the other method. (If you used Fourier analysis
before, use d’Alembert’s method now; and vice versa.)


