Test C - Solutions

Calculators may be used for simple arithmetic operations only!

Useful information:

Laplacian operator in polar coordinates:

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} .
$$

Bessel's equation:

$$
\frac{\partial^{2} Z}{\partial z^{2}}+\frac{1}{z} \frac{\partial Z}{\partial z}+\left(1-\frac{n^{2}}{z^{2}}\right) Z=0 \text { has solutions } J_{n}(z) \text { and } Y_{n}(z)
$$

1. (60 pts.) Consider the eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi \quad(0<x<1) ; \quad \phi^{\prime}(0)=\beta \phi(0), \quad \phi(1)=0 .
$$

NOTE: You should be able to answer (c) and (d) even if you don't have a clue about (a) and (b).
(a) Assuming for now that the eigenvalues λ are all positive, find the eigenfunctions and show how to find the eigenvalues approximately (by a graphical method) if $\beta=2$.
The easiest way is to write $\phi(x)=\sin [\omega(1-x)]$ (where $\omega^{2}=\lambda$) to satisfy the second boundary condition, and then to calculate from the other boundary condition that $-\omega \cos \omega=\beta \sin \omega$. Another way is to write $\phi(x)=A \cos (\omega x)+B \sin (\omega x)$ with A and B unknown. The two boundary conditions give two homogeneous linear equations for A and B. Setting the determinant of the system equal to 0 yields again $-\omega \cos \omega=\beta \sin \omega$. Then you can solve for A and B up to a constant, getting something equivalent to $C \sin [\omega(1-x)]$ after a trig identity.

In either case, you then solve $-\frac{\omega}{\beta}=\tan \omega$ with $\beta=2$ graphically as in Fig. 5.8.1 of Haberman.
(b) Show that the eigenvalues are indeed all positive if $\beta>0$. Describe how an eigenvalue might be negative if $\beta<0$.
Approach 1: Observe that

$$
\begin{gathered}
\lambda \int_{0}^{1}|\phi(x)|^{2} d x \equiv \lambda\langle\phi, \phi\rangle=\left\langle\phi,\left(-\phi^{\prime \prime}\right)\right\rangle=-\int_{0}^{1} \phi(x)^{*} \phi^{\prime \prime}(x) d x \\
=-\phi(1)^{*} \phi^{\prime}(1)+\phi(0)^{*} \phi^{\prime}(0)+\int_{0}^{1}\left|\phi^{\prime}(x)\right|^{2} d x=0+\beta|\phi(0)|^{2}+\int_{0}^{1}\left|\phi^{\prime}(x)\right|^{2} d x .
\end{gathered}
$$

Divide by $\langle\phi, \phi\rangle$ ("Rayleigh quotient") to see that λ is a sum of obviously positive quantities, provided that $\beta>0$. If $\beta<0$ we can't draw that conclusion, but to see clearly whether there must be a negative eigenvalue in that case, we need to resort to the second approach.

Approach 2: Suppose that $\lambda=-\rho^{2}$. Then the solution of the ODE is $\phi(x)=\sinh [\rho(1-x)]$, and a calculation analogous to the one in (a) leads to

$$
\tanh \rho=-\frac{\rho}{\beta} .
$$

This has a (nontrivial) solution if and only if $-1<\beta<0$, as shown by drawing a graph like Fig. 5.8.3. (For negative β there are still infinitely many positive eigenvalues, as shown by Figs. 5.8.2 and 5.8.4.)
(c) Write out the orthogonality and completeness relations obeyed by the eigenfunctions. Given the eigenfunctions $\phi_{n}(x)=\sin \left[\omega_{n}(1-x)\right]$ from (a) (or just the notation ϕ_{n} !) you can define orthonormal eigenfunctions

$$
\psi_{n}(x)=\frac{\phi_{n}(x)}{\left\|\phi_{n}\right\|}, \quad\left\|\phi_{n}\right\|^{2} \equiv \int_{0}^{1}\left|\phi_{n}(x)\right|^{2} d x .
$$

(The integral can be evaluated, but it is not the usual $\pi / 2$ or $L / 2$ of ordinary Fourier series.) Then the orthogonality and completeness relations are

$$
\int_{0}^{1} \psi_{n}(x)^{*} \psi_{m}(x) d x=\delta_{m n}, \quad \sum_{n=1}^{\infty} \psi_{n}(x) \psi_{n}(y)^{*}=\delta(x-y) .
$$

(In this case the complex conjugates are superfluous, since we chose the eigenfunctions real. If there is a negative eigenvalue, you need to include a term for its eigenfunction in the completeness relation (but I should have excluded that case in the problem statement).)

You can also write the equivalent relations in terms of the ϕ_{n}, including the necessary factors of $\left\|\phi_{n}\right\|$.
(d) Use the (normalized) eigenfunctions and eigenvalues to solve the heat problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<1, t>0) \\
\frac{\partial u}{\partial x}(0, t)=\beta u(0, t), \quad u(1, t)=0, \quad u(x, 0)=f(x) .
\end{gathered}
$$

I'll use the normalized functions ψ_{n} to keep the formulas simple. In the usual way you get (with $\lambda_{n}=\omega_{n}{ }^{2}$, still assuming $\beta>0$)

$$
u(x, t)=\sum_{n=1}^{\infty} C_{n} \psi_{n}(x) e^{-\lambda_{n} t}
$$

Then

$$
f(x)=\sum_{n=1}^{\infty} C_{n} \psi_{n}(x)
$$

so

$$
C_{n}=\left\langle\psi_{n}, f\right\rangle=\int_{0}^{1} \psi_{n}(x)^{*} f(x) d x
$$

If you use unnormalized eigenfunctions, you get $\int_{0}^{1}\left|\phi_{n}(x)\right|^{2} d x$ in the denominator (without the square root, since you have redefined C_{n}).
2. (40 pts.) Do ONE of the following ((A) OR (B)). (Sorry, no extra credit for doing both. Clearly indicate which question you want graded.)
(A) Solve Laplace's equation in a sector,

$$
\begin{aligned}
\nabla^{2} u & =0 \quad\left(0<r<3,0<\theta<\frac{\pi}{3}\right) \\
\frac{\partial u}{\partial \theta}(r, 0) & =0=\frac{\partial u}{\partial \theta}\left(r, \frac{\pi}{3}\right), \quad u(3, \theta)=g(\theta) .
\end{aligned}
$$

Writing $u=R \Theta$ yields

$$
\Theta^{\prime \prime}=-\mu^{2} \Theta, \quad R^{\prime \prime}+\frac{1}{r} R^{\prime}-\frac{\mu^{2}}{r^{2}} R=0 .
$$

From the homogeneous boundary conditions we get $\Theta(\theta)=\cos (3 m \theta), \mu=3 m, m=0,1, \ldots$. ($L=\pi / 3 \Rightarrow m \pi / L=3 m, 2 / L=6 / \pi$.) The two independent solutions of the R equation are $r^{ \pm 3 m}$, and possibly $\ln r$ in the case $m=0$, but for regularity at $r=0$ we choose the nonnegative exponents (and no log). Thus

$$
u(r, \theta)=\sum_{m=0}^{\infty} a_{m} r^{3 m} \cos (3 m \theta)
$$

Then

$$
g(\theta)=\sum_{m=0}^{\infty} a_{m} 3^{3 m} \cos (3 m \theta) .
$$

So if $m \neq 0$,

$$
\begin{gathered}
a_{m}=3^{-3 m} \frac{6}{\pi} \int_{0}^{\pi / 3} \cos (3 m \theta) g(\theta) d \theta \\
a_{0}=\frac{3}{\pi} \int_{0}^{\pi / 3} g(\theta) d \theta
\end{gathered}
$$

(B) Solve the wave equation in a disk,

$$
\begin{gathered}
\nabla^{2} u=\frac{\partial^{2} u}{\partial t^{2}} \quad(0 \leq r<3,0 \leq \theta<2 \pi, 0<t<\infty) \\
u(3, \theta, t)=0, \quad u(r, \theta, 0)=f(r, \theta), \quad \frac{\partial u}{\partial t}(r, \theta, 0)=0 .
\end{gathered}
$$

[This is a special case of the "drum problem" done in the class notes, pp. 106-107 and 112-115.]

