
Math. 412 (Fulling) 11 December 2012

Final Examination – Solutions

Calculators may be used for simple arithmetic operations only!

Some possibly useful information

Laplacian operator in polar coordinates:

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
.

Laplacian operator in spherical coordinates (“physicists’ notation”):

∇2u =
1

r2
∂

∂r

(

r2
∂u

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂u

∂θ

)

+
1

r2 sin2 θ

∂2u

∂φ2
.

Spherical harmonics satisfy

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

Ym
l (θ, φ) = −l(l + 1)Ym

l (θ, φ).

Bessel’s equation:

∂2Z

∂z2
+

1

z

∂Z

∂z
+

(

1− n2

z2

)

Z = 0 has solutions Jn(z) and Yn(z) .

∂2Z

∂z2
+

2

z

∂Z

∂z
+

(

1− l(l + 1)

z2

)

Z = 0 has solutions jl(z) and yl(z) .

Legendre’s equation:

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+ l(l + 1)Θ = 0 has a nice solution Pl(cos θ) .

Famous Green function integrals:

1

2π

∫ ∞

−∞
eikx e−k2t dk =

1√
4πt

e−x2/4t,
1

2π

∫ ∞

−∞
eikx e−|k|y dk =

1

π

y

x2 + y2
.

Hyperbolic function identities:

sinh(A±B) = sinhA coshB±coshA sinhB, cosh(A±B) = coshA coshB±sinhA sinhB.



412F-F12 Page 2

1. (30 pts.) Classify each equation as

(i) elliptic, hyperbolic, or parabolic,

and

(ii) linear homogeneous, linear nonhomogeneous, or nonlinear.

(a)
∂u

∂t
+

∂u

∂x
− ∂2u

∂x2
= 0

Parabolic, linear homogeneous.

(b)
∂2u

∂x2
+ (1 + u2)

∂2u

∂y2
= 0

Elliptic, nonlinear.

(c)
∂2u

∂t2
− ∂2u

∂x2
+ cos(2t) = 0

Hyperbolic, linear nonhomogeneous.

2. (40 pts.) Solve Laplace’s equation in a ball,

∇2u = 0 for 0 ≤ r < R,
∂u

∂r
(R, θ, φ) = f(θ, φ).

(You may jump right to the answer if you know it. The spherical harmonic notation is
strongly advised.)

The general solution of Laplace’s equation in spherical coordinates with regularity at the origin is

u(r, θ, φ) =

∞
∑

l=0

l
∑

m=−l

clmrlY m
l (θ, φ) .

Impose the boundary condition

f(θ, φ) =

∞
∑

l=0

l
∑

m=−l

clmlRl−1Y m
l (θ, φ) .

Since the spherical harmonics are orthonormal, it follows that

clm = l−1R1−l

∫ π

0

sin θ dθ

∫ 2π

0

dφY m
l (θ, φ)∗f(θ, φ) .
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3. (60 pts.)

(a) Solve by separation of variables or an equivalent transform technique:

∂u

∂t
− ∂2u

∂x2
= 0 (0 < x < ∞, 0 < t < ∞),

∂u

∂x
(0, t) = 0 (0 < t < ∞),

u(x, 0) = f(x) (0 < x < ∞).

I will use the transform language since it’s briefer. The infinite x interval and Neumann boundary
condition suggest a Fourier cosine transform in x :

∂U

∂t
+ ω2U = 0 , U(ω, 0) = F (ω) .

So

U(ω, t) = F (ω)e−ω2t .

So far I didn’t say how the transform is normalized; we need a net factor of 2
π . So if you define

F (ω) =

∫

∞

0

cos(ωx)f(x) dx , (1)

you have

u(x, t) =
2

π

∫

∞

0

cos(ωx)e−ω2tF (ω) dω . (2)

(b) Find the Green function that gives the solution to (a) in the form

u(x, t) =

∫ ∞

0
G(x, z, t)f(z) dz .

(There are two methods. Do evaluate the integral if your method leads to one.)
Method 1: Substitute (1) into (2) and rearrange:

u(x, t) =
2

π

∫

∞

0

dz

∫

∞

0

dω cos(ωx) cos(ωz)e−ω2tf(z) .

So we can identify

G(x, z, t) =
2

π

∫

∞

0

dω cos(ωx) cos(ωz)e−ω2t

=
1

2π

∫

∞

0

dω
[

eiω(x+z) + e−iω(x+z) + eiω(x−z) + e−iω(x−z)
]

e−ω2t

=
1

2π

∫

∞

−∞

dω
[

eiω(x+z) + eiω(x−z)
]

e−ω2t

=
1√
4πt

[

e−(x+z)2/4t + e−(x−z)2/4t
]

.

Method 2: We know that the first famous integral, with x replaced by x − z , is the Green
function for the analogous problem on the whole line. By the method of images, the Green function
for our problem is obtained by adding the same function of z replaced by −z .
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4. (40 pts.) Solve the heat equation in the region between two concentric spheres:

∂u

∂t
= ∇2u for 1 ≤ r < 2 ,

u(t, 1, θ, φ) = 0, u(t, 2, θ, φ) = 0 ,

u(0, r, θ, φ) = f(r, θ) (independent of φ ).

(Note that φ is the azimuthal angle, not the polar one.)

Separate variables as u = Ψω(r, θ, φ)e−ω2t , arriving at −ω2Ψω = ∇2Ψω , the Laplacian in spherical
coordinates being given on the first page of the test. The quickest way to proceed is to notice that
since the data function in this problem is independent of φ , the relevant eigenfunctions will be, too;
therefore, we can discard all the φ derivatives and get

1

r2
∂

∂r

(

r2
∂U

∂r

)

+
1

r2
1

sin θ

∂

∂θ

(

sin θ
∂Ψ

∂θ

)

= −ω2U.

Multiply by r2 and separate variables again: U = R(r)Θ(θ) ,

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+ l(l + 1)Θ = 0

d

dr

(

r2
dR

dr

)

= l(l + 1)R− ω2r2R .

So Θ = Pl(cos θ) and

d2R

dr2
+

2

r

dR

dr
=

(

l(l1)

r2
− ω2

)

R ,

whose solutions are jl(ωr) and yl(ωr) , the spherical Bessel functions. We need to choose a linear
combination of them that vanishes at r = 1 ;

Rl(ω, r) ≡ jl(ωr)yl(ω)− yl(ωr)jl(ω)

will do. We also need
0 = Rl(ω, 2) = jl(2ω)yl(ω)− yl(2ω)jl(ω) ;

this is the (regular Sturm–Liouville) eigenvalue condition to be solved for the allowed values ωj .
The full solution now is

u(t, r, θ, φ) =

∞
∑

j=1

∞
∑

l=0

CljRl(ωj , r)Pl(cos θ)e
−ωj

2t .

The coefficients are

Cln =
〈Ulj , f〉
‖Ulj‖2

, Ulj(r, θ) = Rl(ωj , r)Pl(cos θ) .

The numerator and denominator are messy to write out; they both involve integrations of the type

∫ 2

1

r2dr

∫ π

0

cos θ dθ .

There is no need to integrate over φ , or even to multiply by 2π because that will cancel. Remember,
however, that the Legendre polynomials are not normalized to unit norm.
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5. (Brief essays – 30 pts.) Imagine that you are grading homework, or working in a help
session, in this course. How would you explain to a student how [s]he is going wrong?

(a) The problem is the wave equation on the real line (−∞ < x < ∞ ). The student has
separated variables and arrived at mode functions of the form

(

Aω cos(ωx) +Bω sin(ωx)
)(

Cω cos(ωt) +Dω sin(ωt)
)

.

The solution must be a linear combination of normal modes,

Aω cos(ωx) cos(ωt) +Bω sin(ωx) cos(ωt) + Cω cos(ωx) sin(ωt) +Dω sin(ωx) sin(ωt) .

In the product form, solutions for the coefficients that match the data may not exist and may not be
unique.

(b) The problem is the heat equation on an interval of length π with data

u(x, 0) = f(x) , u(0, t) = T , u(π, t) = 0 .

The student has separated variables and arrived at the equations

X ′′
n(x) = −n2Xn(x) , Xn(0) = T .

You can’t impose a nonhomogeneous boundary condition on the individual normal modes! When you
add them, the condition will not be satisfied. In this problem you should find a steady-state solution
first and subtract it off.

(c) The problem is Laplace’s equation on the semiinfinite strip 0 < x < ∞ , 0 < y < L

with boundary data

u(x, 0) = 0 , u(x, L) = f(x) , u(0, y) = 0 .

The student has written down a sum

u(x, y) =

∞
∑

n=1

cn sin(
√

λn x) sinh(
√

λn y) .

What is λn here? Because the data interval is infinite, the solution should be a transform (integral),
not a sum.


