Math. 412 (Fulling) 19 September 2012

Test A — Solutions
Calculators may be used for simple arithmetic operations only!

When a question appears in two versions, answer the version appropriate to your
status (honors or regular). Then work on the other version if you have time.

1. (15 pts.) Classify each of these equations as linear homogeneous, linear nonhomogeneous,
or nonlinear. (In each case, u is the unknown function.)

(a) wu(x)+ /033 t2u(t) dt = cosx .

linear nonhomogeneous

0%u  H%u
b) — + —5 =3u.
(b) 2 * dy? "

linear homogeneous

(c) @_82_“_‘_ 2 Ou
Dot T o2 Y
nonlinear

2. (40 pts.) Consider the wave propagation problem
0%u _ 0% 0<z< <t < o0)
— = —5 r < oo, —00 00),
ot2  0x?
u(0,t) =0 (—o0 < t < 00),

u(z,0)=0 (0 <z < o0),

0
S @0=g() (0<w<)
ot
where )
g(x) = —2(z — 2)6_($_2) (regular)
o 1 forl 2
<z <2,
g(z) = { Or ) (honors)
0 elsewhere.

Answer (a) and (b) in whichever order you prefer (or together).

(a) Sketch the solution as a function of = for t =1, t=2, t=3,and t=4.
(b) Write down the solution by the d’Alembert (characteristics) method.

Regular problem: Note that g can easily be integrated:
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So G is a pulse sharply peaked around x = 2. To satisfy the boundary condition at x = 0 we
need to pass to the even extension of G (corresponding to the odd extension of ¢ ). The extended

G equals the old G for positive = and equals exp [—(x + 2)2} for negative x. Then according to
d’Alembert’s formula,

u(z,t) = 1[Gz +t) — Gz —t)].

Since the extended G itself consists of 2 pulses, the full solution has 4 pulses, one of which moves

to the left from x = —2 and hence never enters the physical region. At ¢t = 2 the left-moving pulse
that originated at x = 2 hits the boundary and leaves the physical region, and the right-moving
pulse from = = —2 enters the physical region; these two pulses have opposite signs, as always for

a Dirichlet boundary. The right-moving pulses are negative, the left-moving ones are positive. The
right-moving pulse from x = 2 stays in the physical region forever. (I will not describe in words
what happens for ¢t < 0.) At ¢ =0 the pulses cancel each other, in keeping with the initial condition
u(x,0) = 0. In space-time the pulses move like this:

Honors problem: This time we can take

0 ifo<x<l,
Grx)y=<z—-1 ifl<z<?2,
1 if x > 2.

Thus G is not a localized pulse, but more like a moving slab. The even extension has also

1 if x < =2,
Gz)y=< —z—1 if 2 <z< -1,
0 if —1<x<0.
The full solution
u(z,t) = 3[G(x +1t) — Gz — t)]

is a depression between two slabs moving to the left minus a depression between two slabs moving to
the right. It helps to graph both terms at time ¢ and then sketch their sum; after some intermediate
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sketches on separate paper one sees that the correct picture is

Only the physical region of z is shown. I included time ¢ = —1 because it shows an incoming pulse
that will reflect and invert when it is close to the boundary. It’s also instructive to look at small
fractional values of ¢ such as 1.5, 0.5, 0.2; see attached Mathematica session.

3. (45 pts.)

(a) Let f(x) = on the interval 0 < x < 7. Find the Fourier sine series of f on that
interval.

™ T ™
bn = g/ xsin(nx) dx = 2 {— z cos(nx) —|—/ cos(nz) dx}
7 /o i n 0 0 n
2z 1. T 27 7 (="l
= [ - cos(nz) + 2 sm(nm)h = [ - cos(mr)} = -

(b)

(1) Does the series converge pointwise?

Yes, the function f is piecewise smooth.

(2) Does it converge uniformly?

No, the function (extended to be odd and piecewise periodic) is not continuous at x = 7, for example.
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(3) To what does it converge outside the interval?
the odd periodic extension just described:

f
T T
(c) Solve the wave propagation problem
0%u 92w
wzﬁ (O<.’E<7T, —OO<t<OO),
x

u(0,t) =0 = u(m,t) (—o0 <t < 0),
ou
u(x,0) = x, E(w,O):O (0<zx<m)

by the Fourier method (separation of variables). (Don’t go through all the steps of
“discovering” the right separated solutions. Just use the results of (a) and (b).)

X  1yn—1
u(z,t) = Z (DTQ sin(nx) cos(nt).
n=1



