
Math. 412 (Fulling) 19 October 2012

Test B – Solutions

Calculators may be used for simple arithmetic operations only!

When a question appears in two versions, answer the version appropriate to your
status (honors or regular). Then work on the other version if you have time.

1. (30 pts.) Solve by separation of variables or an equivalent transform technique:

∂2u

∂x2
+

∂2u

∂y2
= 0 (0 < x < ∞, 0 < y < π),

u(0, y) = 0 (0 < y < π),

u(x, 0) = 0 , u(x, π) = f(x) (0 < x < ∞).

(Consider only bounded solutions.)

Transform method: We have data on an infinite half-line, so a Fourier sine or cosine transform seems
appropriate. The Dirichlet condition at x = 0 calls for a sine transform. Let’s write g̃(k) for the
sine transform of a function g(x) . Transforming each equation in the problem, we get

−k2ũ(k, y) +
∂2ũ

∂y2
= 0 , ũ(k, 0) = 0 , ũ(k, π) = f̃(k) .

From the first two equations, ũ(k, y) = C(k) sinh(ky) , and so C(k) = f̃(k)/ sinh(πk) from the third
equation. Thus

u(x, y) =
2

π

∫ ∞

0

sinh(ky)

sinh(kπ)
sin(kx)f̃(k) dk , f̃(k) ≡

∫ ∞

0

f(x) sin(kx) dx .

Separation method: We look for solutions usep(x, y) = X(x)Y (y) and get

Y ′′

Y
= −

X ′′

X
= λ , X(0) = 0 , Y (0) = 0 .

Again looking ahead at the data, we set λ = +k2 to get oscillatory solutions in x . Then X(x) =
sin(kx) and Y (y) = sinh(ky) . So the full solution is

u(x, y) =

∫ ∞

0

C(k) sin(kx) sinh(ky) dk .

Finally, f(x) =
∫∞

0
C(k) sin(kx) sinh(kπ) dk , so

C(k) =
2

π

∫ ∞

0

f(x) sin(kx)

sinh(kπ)
dx .
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2. (20 pts.) (regular) Solve

∂2w

∂x2
+

∂2w

∂y2
= 0 (0 < x < ∞, 0 < y < π),

w(0, y) = h(y) (0 < y < π),

w(x, 0) = 0 , w(x, π) = 0 (0 < x < ∞).

(Consider only bounded solutions.)

This time we have data on the finite interval of length π , with Dirichlet boundary conditions, so we
expect a Fourier sine series (with π/L = 1 ).

Separation method: Write

−
Y ′′

Y
=

X ′′

X
= +k2 , Y (0) = 0 , Y (π) = 0 .

So Y (y) = sin(ny) , and X(x) = e−nx since the solution must be bounded as x → 0 . Thus the full
solution is

u(x, y) =

∞
∑

n=1

bne
−nx sin(ny) .

Finally,

bn =
2

π

∫

π

0

h(y) sin(ny) dy .

“Transform” method: The analogue of the transform is the calculation of the Fourier coefficients.
Let’s write

g̃n ≡
2

π

∫ π

0

g(y) sin(ny) dy .

Then
∂2w̃n

∂x2
− n2w̃n(x) = 0 , w̃n(0) = h̃n .

Therefore, w̃n(x) = h̃ne
−nx . Finally,

u(x, y) =

∞
∑

n=1

h̃ne
−nx sin(ny) .

2. (20 pts.) (honors) Try to find any solution of

∂v

∂t
=

∂2v

∂y2
(0 < t < ∞, 0 < y < π),

v(t, 0) = g(t) , v(t, π) = 0 (0 < t < ∞).

You won’t succeed, but go as far as you can. (Assume that g(t) → 0 as t → +∞ .)
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This is a variation on the “vegetable cellar” problem. Take a Laplace transform in t :

sU(s, y) =
∂2U

∂y2
, U(s, 0) = G(s) , U(s, π) = 0 .

Thus

U(s, y) = G(s)
sinh[

√
s(π − y)]

sinh(
√
sπ)

.

Now “all” we need to do is to find the inverse Laplace transform of this function.

3. (10 pts.) Assume that you have a solution of the honors version of Question 2. Explain
how you would use it to solve

∂u

∂t
=

∂2u

∂y2
(0 < t < ∞, 0 < y < π),

u(0, y) = f(y) (0 < y < π),

u(t, 0) = g(t) , u(t, π) = 0 (0 < t < ∞).

Let w = u− v , so that u = v + w . Then

∂w

∂t
=

∂2w

∂y2
, w(t, 0) = 0 = w(t, π) , w(0, y) = f(y)− v(0, y) ≡ h(y) .

Finding w is a routine heat flow problem (covered last month, and similar to the regular version of
Question 2).

4. (15 pts.)

(a) Justify the claim that, when x and y are positive,

2

π

∫ ∞

0
cos(kx) cos(ky) dk = δ(x− y) .

Substitute one of the Fourier cosine formulas into the other:

g̃(k) ≡

√

2

π

∫ ∞

0

cos(kz)g(x)dx , g(x) =

√

2

π

∫ ∞

0

cos(kz)g̃(k)dk .

g(x) =
2

π

∫ ∞

0

dz

∫ ∞

0

dk cos(kx) cos(kz)g(z)dz .

Thus the given integral acts as a delta function.

Alternative method: Write out everything in terms of e±ikx and use
∫∞

−∞
eikz = 2πδ(z) . This

way you will get the answer to (b) first.
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(b) What happens when x is allowed to be negative?

2

π

∫ ∞

0

cos(kx) cos(ky) dk = δ(x− y) + δ(x+ y) .

There are several arguments to justify this conclusion. (1) The object must be even in x because
cos(kx) is. (2) The cosine transform is equivalent to the ordinary (exponential) Fourier transform
applied to even extensions, so every feature on the positive axis has a mirror image on the negative
axis.

5. (25 pts.) Construct the Green function that solves

y′′ − 9y = f(x) (0 < x < 1),

y(0) = 0 = y(1) .

Clearly state the formula for calculating y from G and f .
Hint: sinh a cosh b− cosh a sinh b = sinh(a− b) .

The formula will be

y(x) =

∫ 1

0

G(x, z)f(z)dz .

The Green function must satisfy

∂2G

∂x2
− 9G = δ(x− z) , G(0, z) = 0 = G(1, z) .

The differential equation is interpreted as

∂2G

∂x2
− 9G = 0 for x < z and x > z .

G(z+, z) = G(z−, z) ,
∂G

∂x
(z+, z)−

∂G

∂x
(z−, z) = 1 .

Therefore, in view of the boundary conditions,

G(x, z) =

{

A(z) sinh(3x) for 0 < x < z,

B(z) sinh(3(x− 1)) for z < x < 1.

The jump conditions give

A(z) sinh(3z) = B(z) sinh(3(z − 1)) , 3A(z) cosh(3z)− 3B(z) cosh(3(z − 1)) = −1 .

After some algebra using the hint, you get

A(z) =
sinh(3(z − 1))

3 sinh 3
, B(z) =

sinh(3z)

3 sinh 3
.

Alternative method: Call the left-hand and right-side solutions u−(x) = sinh(3x) , u+(x) =
sinh(3(x− 1)) . The general formula that comes up in all such problems is

G(x, z) =
u−(x−)u+(x+)

W (u−, u+)
,

where the Wronskian is (for any x )

W (u−, u+) = u1u
′
+ = u+u′− = 3 sinh(3x) cosh(3(x− 1))− 3 cosh(3x) sinh(3(x− 1)) = 3 sinh 3 .

So

G(x, z) =
sinh(3x−) sinh(3(x+ − 1))

3 sinh 3
.


