
Math. 412 (Fulling) 16 November 2012

Test C – Solutions

Calculators may be used for simple arithmetic operations only!

Useful information:

Laplacian operator in cylindrical coordinates:

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+

∂2u

∂z2
.

Bessel’s equation:

∂2Z

∂z2
+

1

z

∂Z

∂z
+

(

1−
n2

z2

)

Z = 0 has solutions Jn(z) and Yn(z) .

1. (40 pts.) Solve as completely as you can:

∂2u

∂t2
=

∂2u

∂x2
(0 < x < L , −∞ < t < ∞),

u(0, t) = 0 ,
∂u

∂x
(L, t) + γu(L, t) = 0 ,

u(x, 0) = f(x) ,
∂u

∂t
(x, 0) = g(x) .

(Assume that all the eigenvalues you encounter (for X ′′ = −λX ) are positive.)

Separating variables as usep = T (t)X(x) yields

T ′′ = −λT , X ′′ = −λX , X(0) = 0 , X ′(L) + γX(L) = 0 .

If we assume λ > 0 and set λ = ω2 , we get X(x) = sin(ωx) (because of the first boundary condition)
and ω cos(ωL) + γ sin(ωL) = 0 (because of the second one). Write the eigenvalue condition as

tan(ωL) = −
ω

γ

and sketch the graphs of the two sides of that equation. We see that each branch of the tangent curve
except the first intersects the straight line once, yielding a root ωn slighly greater than γπ

2L (2n− 1)
(and increasingly close to that value as n becomes large). Then the general solution of the wave
equation is

u(x, t) =

∞
∑

n=1

[

an sin(ωnx) cos(ωnt) + bn sin(ωnx) sin(ωnt)
]

.
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We will need the normalization constant

Nn =

∫ L

0

sin(ωnx)
2 dx

(which can be evaluated in terms of ωn , but I won’t). Then

f(x) =

∞
∑

n=1

an sin(ωnx)

with

an =
1

Nn

∫ L

0

sin(ωnx)f(x) dx

and

g(x) =

∞
∑

n=1

ωnbn sin(ωnx) cos(ωnt)

with

bn =
1

ωnNn

∫ L

0

sin(ωnx)g(x) dx .

2. (10 pts.) (continuation of Question 1)

regular: Prove that all the eigenvalues are indeed positive, if γ > 0 .
Hint: Write out 〈X,X ′′〉 , where 〈·, ·〉 is the inner product appropriate to the
problem, and integrate by parts.

On the one hand,

〈X,X ′′〉 = −λ〈X,X〉 = −λ

∫ L

0

X(x)2 dx .

On the other hand,

〈X,X ′′〉 =

∫ L

0

X(x)X ′′(x) dx = X(x)X ′(x)
∣

∣

L

0
−

∫ L

0

X ′(x)X ′(x) dx = −γX(L)2 −

∫ L

0

X ′(x)2 dx .

Put it all together and cancel a sign:

λ

∫ L

0

X(x)2 dx = γX(L)2 +

∫ L

0

X ′(x)2 dx .

Since all the squares are positive, λ must be positive.
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honors: Determine what happens when γ < 0 .

When γ is negative but small ( Lγ > −1 ), the straight line intersects the first branch of the tangent
curve also. When Lγ = −1 , this root hits 0 ; in that case the eigenfunction is X(x) = x . We

therefore suspect that for Lγ < −1 there is a negative eigenvalue. So, we try λ = −ρ2 and get
X(x) = sinh(ρx) with ρ cosh(ρL) + γ sinh(ρL) = 0 , or

tanh(ρL) = −
ρ

γ
.

The graph of tanh(ρL) starts at the origin with slope L and has a horizontal asymptote at height 1 .

Therefore, it intersects the line (once) if and only if 1
|γ|

< L , or Lγ < −1 , as expected. (Intersections

at zero and negative values of ρ are not relevant.) In this situation the solution of the wave equation
includes terms

a0 sinh(ρx) cosh(ρt) + b0 sinh(ρx) sinh(ρt)

with

a0 =
1

N0

∫ L

0

sinh(ρx)f(x) dx ,

b0 =
1

ρN0

∫ L

0

sinh(ρx)g(x) dx ,

N0 =

∫ L

0

sinh2(ρx) dx .

3. (50 pts.) Solve the 3-dimensional Laplace equation in a cylinder,

∇2u = 0 , (0 < z < L , 0 ≤ r < S , 0 ≤ θ < 2π),

u(S, θ, z) = 0 , u(r, θ, 0) = 0 , u(r, θ, L) = h(r, θ) ,

periodic boundary conditions in θ .

Separate variables as usep = R(r)Θ(θ)Z(z) , getting

0 = R′′ΘZ +
1

r
R′ΘZ +

1

r2
RΘ′′Z + RΘZ′′ .

We can foresee that Θ(θ) = einθ for integer n , and that Z′′/Z will equal another separation
constant. Because the homogeneous boundary condition is on R , not Z , one can anticipate that
this constant will be positive, so Z(z) = sinh(ωz) and

0 = R′′ +
1

r
R′ −

n2

r2
R+ ω2R

with R(S) = 0 and R regular at the axis of the cylinder. Thus R(r) = Jn(ωr) with Jn(ωS) = 0 .
Let znj be the j th root of Jn . The complete solution is now

u(r, θ, z) =

∞
∑

n=−∞

∞
∑

j=1

CnjJn

(znjr

S

)

einθ sinh
(znjz

S

)

.
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It remains to satisfy

h(r, θ) =

∞
∑

n=−∞

∞
∑

j=1

CnjJn

(znjr

S

)

einθ sinh

(

znjL

S

)

.

Using orthogonality of the 2-dimensional eigenfunctions and the known normalization of the {einθ} ,
we find

Cnj sinh

(

znjL

S

)

=

∫ 2π

0
dθ
∫ S

0
r dr e−inθJn

(znjr
S

)

h(r, θ)

2π
∫ S

0
Jn
( znjr

S

)2
r dr

.


