Test C - Solutions

Calculators may be used for simple arithmetic operations only!

Useful information:

Laplacian operator in cylindrical coordinates:

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

Bessel's equation:

$$
\frac{\partial^{2} Z}{\partial z^{2}}+\frac{1}{z} \frac{\partial Z}{\partial z}+\left(1-\frac{n^{2}}{z^{2}}\right) Z=0 \quad \text { has solutions } J_{n}(z) \text { and } Y_{n}(z)
$$

1. (40 pts.) Solve as completely as you can:

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<L, \quad-\infty<t<\infty) \\
u(0, t)=0, \quad \frac{\partial u}{\partial x}(L, t)+\gamma u(L, t)=0 \\
u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(x)
\end{gathered}
$$

(Assume that all the eigenvalues you encounter (for $X^{\prime \prime}=-\lambda X$) are positive.)
Separating variables as $u_{\text {sep }}=T(t) X(x)$ yields

$$
T^{\prime \prime}=-\lambda T, \quad X^{\prime \prime}=-\lambda X, \quad X(0)=0, \quad X^{\prime}(L)+\gamma X(L)=0 .
$$

If we assume $\lambda>0$ and set $\lambda=\omega^{2}$, we get $X(x)=\sin (\omega x)$ (because of the first boundary condition) and $\omega \cos (\omega L)+\gamma \sin (\omega L)=0$ (because of the second one). Write the eigenvalue condition as

$$
\tan (\omega L)=-\frac{\omega}{\gamma}
$$

and sketch the graphs of the two sides of that equation. We see that each branch of the tangent curve except the first intersects the straight line once, yielding a root ω_{n} slighly greater than $\frac{\gamma \pi}{2 L}(2 n-1)$ (and increasingly close to that value as n becomes large). Then the general solution of the wave equation is

$$
u(x, t)=\sum_{n=1}^{\infty}\left[a_{n} \sin \left(\omega_{n} x\right) \cos \left(\omega_{n} t\right)+b_{n} \sin \left(\omega_{n} x\right) \sin \left(\omega_{n} t\right)\right] .
$$

We will need the normalization constant

$$
N_{n}=\int_{0}^{L} \sin \left(\omega_{n} x\right)^{2} d x
$$

(which can be evaluated in terms of ω_{n}, but I won't). Then

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\omega_{n} x\right)
$$

with

$$
a_{n}=\frac{1}{N_{n}} \int_{0}^{L} \sin \left(\omega_{n} x\right) f(x) d x
$$

and

$$
g(x)=\sum_{n=1}^{\infty} \omega_{n} b_{n} \sin \left(\omega_{n} x\right) \cos \left(\omega_{n} t\right)
$$

with

$$
b_{n}=\frac{1}{\omega_{n} N_{n}} \int_{0}^{L} \sin \left(\omega_{n} x\right) g(x) d x
$$

2. (10 pts.) (continuation of Question 1)
regular: Prove that all the eigenvalues are indeed positive, if $\gamma>0$.
Hint: Write out $\left\langle X, X^{\prime \prime}\right\rangle$, where $\langle\cdot, \cdot\rangle$ is the inner product appropriate to the problem, and integrate by parts.
On the one hand,

$$
\left\langle X, X^{\prime \prime}\right\rangle=-\lambda\langle X, X\rangle=-\lambda \int_{0}^{L} X(x)^{2} d x
$$

On the other hand,

$$
\left\langle X, X^{\prime \prime}\right\rangle=\int_{0}^{L} X(x) X^{\prime \prime}(x) d x=\left.X(x) X^{\prime}(x)\right|_{0} ^{L}-\int_{0}^{L} X^{\prime}(x) X^{\prime}(x) d x=-\gamma X(L)^{2}-\int_{0}^{L} X^{\prime}(x)^{2} d x
$$

Put it all together and cancel a sign:

$$
\lambda \int_{0}^{L} X(x)^{2} d x=\gamma X(L)^{2}+\int_{0}^{L} X^{\prime}(x)^{2} d x
$$

Since all the squares are positive, λ must be positive.
honors: Determine what happens when $\gamma<0$.
When γ is negative but small ($L \gamma>-1$), the straight line intersects the first branch of the tangent curve also. When $L \gamma=-1$, this root hits 0 ; in that case the eigenfunction is $X(x)=x$. We therefore suspect that for $L \gamma<-1$ there is a negative eigenvalue. So, we try $\lambda=-\rho^{2}$ and get $X(x)=\sinh (\rho x)$ with $\rho \cosh (\rho L)+\gamma \sinh (\rho L)=0$, or

$$
\tanh (\rho L)=-\frac{\rho}{\gamma} .
$$

The graph of $\tanh (\rho L)$ starts at the origin with slope L and has a horizontal asymptote at height 1 . Therefore, it intersects the line (once) if and only if $\frac{1}{|\gamma|}<L$, or $L \gamma<-1$, as expected. (Intersections at zero and negative values of ρ are not relevant.) In this situation the solution of the wave equation includes terms

$$
a_{0} \sinh (\rho x) \cosh (\rho t)+b_{0} \sinh (\rho x) \sinh (\rho t)
$$

with

$$
\begin{gathered}
a_{0}=\frac{1}{N_{0}} \int_{0}^{L} \sinh (\rho x) f(x) d x \\
b_{0}=\frac{1}{\rho N_{0}} \int_{0}^{L} \sinh (\rho x) g(x) d x \\
N_{0}=\int_{0}^{L} \sinh ^{2}(\rho x) d x
\end{gathered}
$$

3. (50 pts.) Solve the 3 -dimensional Laplace equation in a cylinder,

$$
\begin{gathered}
\nabla^{2} u=0, \quad(0<z<L, \quad 0 \leq r<S, \quad 0 \leq \theta<2 \pi) \\
u(S, \theta, z)=0, \quad u(r, \theta, 0)=0, \quad u(r, \theta, L)=h(r, \theta)
\end{gathered}
$$

periodic boundary conditions in θ.
Separate variables as $u_{\text {sep }}=R(r) \Theta(\theta) Z(z)$, getting

$$
0=R^{\prime \prime} \Theta Z+\frac{1}{r} R^{\prime} \Theta Z+\frac{1}{r^{2}} R \Theta^{\prime \prime} Z+R \Theta Z^{\prime \prime}
$$

We can foresee that $\Theta(\theta)=e^{i n \theta}$ for integer n, and that $Z^{\prime \prime} / Z$ will equal another separation constant. Because the homogeneous boundary condition is on R, not Z, one can anticipate that this constant will be positive, so $Z(z)=\sinh (\omega z)$ and

$$
0=R^{\prime \prime}+\frac{1}{r} R^{\prime}-\frac{n^{2}}{r^{2}} R+\omega^{2} R
$$

with $R(S)=0$ and R regular at the axis of the cylinder. Thus $R(r)=J_{n}(\omega r)$ with $J_{n}(\omega S)=0$. Let $z_{n j}$ be the j th root of J_{n}. The complete solution is now

$$
u(r, \theta, z)=\sum_{n=-\infty}^{\infty} \sum_{j=1}^{\infty} C_{n j} J_{n}\left(\frac{z_{n j} r}{S}\right) e^{i n \theta} \sinh \left(\frac{z_{n j} z}{S}\right)
$$

It remains to satisfy

$$
h(r, \theta)=\sum_{n=-\infty}^{\infty} \sum_{j=1}^{\infty} C_{n j} J_{n}\left(\frac{z_{n j} r}{S}\right) e^{i n \theta} \sinh \left(\frac{z_{n j} L}{S}\right)
$$

Using orthogonality of the 2-dimensional eigenfunctions and the known normalization of the $\left\{e^{i n \theta}\right\}$, we find

$$
C_{n j} \sinh \left(\frac{z_{n j} L}{S}\right)=\frac{\int_{0}^{2 \pi} d \theta \int_{0}^{S} r d r e^{-i n \theta} J_{n}\left(\frac{z_{n j} r}{S}\right) h(r, \theta)}{2 \pi \int_{0}^{S} J_{n}\left(\frac{z_{n j} r}{S}\right)^{2} r d r}
$$

