
Bessel functions

The drum problem: Consider the wave equation (with c = 1) in a disc
with homogeneous Dirichlet boundary conditions:

∇2u =
∂2u

∂t2
, u(r0, θ, t) = 0,

u(r, θ, 0) = f(r, θ),
∂u

∂t
(r, θ, 0) = g(r, θ).

(Note that to solve the nonhomogeneous Dirichlet problem for the wave equation,
we would add this solution to that of the disc potential problem, I, solved in the
previous section; the latter is the steady-state solution for the wave problem.)

We expect to get a sum over normal modes,

u =
∑

n

φ
n
(r, θ)Tn(t).
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Let us seek the separated solutions: If usep = φ(r, θ)T (t), then

∇2φ

φ
=

T ′′

T
= −ω2.

Therefore
T = αeiωt + βe−iωt = A cos(ωt) +B sin(ωt).

As for φ, it will be periodic in θ and satisfy φ(r0, θ) = 0 along with the Helmholtz

equation

−ω2φ = ∇2φ =
1

r

∂

∂r

(

r
∂φ

∂r

)

+
1

r2
∂2φ

∂θ2
.

This is still a partial DE, so we separate variables again: φ = R(r)Θ(θ),

r(rR′)′

R
+ r2ω2 = − Θ′′

Θ
= ν2.
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(In the last section we did this step for ω = 0, and ν2 was called −K.) The
boundary condition becomes R(r0) = 0, and as in the previous disc problem we
need to assume that R is bounded as r → 0, so that φ will be differentiable at the
origin and be a solution there. The angular equation is the familiar Θ′′ = −ν2Θ,
with solutions

Θ(θ) = e±inθ with n = |ν| an integer.

Remark: Unlike the last disc problem, here we have homogeneous BC on
both Θ and R. The nonhomogeneity in this problem is the initial data on u.

We can write the radial equation in the Sturm–Liouville form

(rR′)′ − n2

r
R + ω2rR = 0

or in the form

R′′ +
1

r
R′ +

(

ω2 − ν2

r2

)

R = 0.
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This is called Bessel’s equation if ω2 6= 0. (We already studied the case ω = 0 at
length. Recall that the solutions were powers of r, except that ln r also appeared
if n = 0.) We can put the Bessel equation into a standard form by letting

z ≡ ωr; r =
z

ω
,

d

dr
= ω

d

dz
.

After dividing by ω2 we get

d2R

dz2
+

1

z

dR

dz
+

(

1− n2

z2

)

R = 0.

(The point of this variable change is to get an equation involving only one arbi-
trary parameter instead of two.)

If we have a solution of this equation, say R = Zn(z), then R(r) ≡ Zn(ωr) is
a solution of the original equation (with ν = ±n). All solutions Zn(z) are called
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Bessel functions of order n. Although they are not expressible in terms of ele-
mentary functions (except when n is half an odd integer), they have been studied
so much that many properties of them are known and tabulated in handbooks,
symbolic algebra programs, etc.

Remark: For the disk problem, n must be an integer (which we can take
nonnegative), but for sector problems, other values of n can appear.

Properties of Bessel functions

Power series solution:

In a good differential equations course one learns to substitute

Zn(z) = zα
∞
∑

m=0

cmzm
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into Bessel’s equation, equate the coefficient of each power of z to 0, and try to
solve for α and the cm (“method of Frobenius”). It turns out that α = ±n (so α
can be identified with the ν of the original equation), and that for n a nonnegative
integer there is a solution of the assumed form only for the positive root. It is
called “J”:

Jn(z) ≡
(z

2

)n
∞
∑

m=0

(−1)m

m! (n+m)!

(z

2

)2m

.

This series converges for all z.

Any solution linearly independent of Jn has a singularity at z = 0 (in fact,
it goes to ∞ in absolute value there). For noninteger n the series with α = −n
exists and contains negative powers, but for integer n the second solution involves
a logarithm. (It can be found by the method of “reduction of order”.) This
second solution is nonunique, because of the freedom to multiply by a constant
and the freedom to add a multiple of Jn. However, there is a standard choice

6



(“normalization”) of the second solution, called either Yn(z) or Nn(z); I prefer
“Y ”.

General behavior: Here is a graph of J4 and Y4 . Near the origin, Jn behaves
like zn, while Yn blows up like z−n (like ln z if n = 0). At large z both functions
oscillate, with a slowly decreasing amplitude.
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Behavior at small argument (z → 0):
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Think of Jn as like rn, Yn as like r−n. More precisely,

Jn(z) ≈
1

n!

(z

2

)n

,

Y0(z) ≈
2

π
ln z,

Yn(z) ≈ − (n− 1)!

π

(z

2

)−n

if n > 0.

Therefore, for a problem inside a disc only J functions will appear, by the
boundedness criterion previously mentioned.

Behavior at large argument (z → +∞):

Think of Jn as like cos, Yn as like sin. More precisely,

Jn(z) ≈
√

2

πz
cos

(

z − 1
2nπ − 1

4π
)

,
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Yn(z) ≈
√

2

πz
sin

(

z − 1
2
nπ − 1

4
π
)

.

One defines the analogues of complex exponentials:

H(1)
n (z) ≡ Jn + iYn ≈

√

2

πz
(−i)n+

1

2 eiz,

H(2)
n

(z) ≡ Jn − iYn ≈
√

2

πz
in+

1

2 e−iz.

The crossover point between the r±n behavior and the trigonometric behavior
is somewhere close to z = n.

It is not necessary to memorize all these formulas. You should know:

1. J is bounded and smooth at 0; Y isn’t.
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2. The Bessel functions (for real n and ω) are oscillatory at infinity. (Note that
their “envelope” decreases as 1/

√
z, but this is not enough to make them

square-integrable.)

Recursion relations:
zJ ′

n + nJn = zJn−1 ,

zJ ′

n
− nJn = −zJn+1 .

From these follow
2n

z
Jn = Jn−1 + Jn+1

and, most useful of all,
2J ′

n
= Jn−1 − Jn+1 .

(So the derivative of a Bessel function is not really a new function. Note that
the second (and hence any higher) derivative can be calculated using the Bessel
equation itself.)
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The recursion relations are useful in many ways. For instance, computer
programs need to calculate Jn “by brute force” only for a few values of n and
then use the recursion relations to interpolate.

Modified Bessel functions (and other such things)

In the application just discussed, we had ν2 > 0 and ω2 > 0. But Bessel’s
equation,

R′′ +
1

r
R′ +

(

ω2 − ν2

r2

)

R = 0.

also makes sense, and has applications, when one or both of these parameters is
negative or complex, so that ν or ω is complex. Complex ω corresponds to com-
plex z, since z = ωr. In particular, imaginary ω (negative real ω2) corresponds to
evaluation of the Bessel functions on the imaginary axis: Zν(i|ω|r). This is anal-
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ogous to the passage from e±nx to e±inx, which yields the trigonometric functions
(except that here we are moving in the reverse direction, as we shall now see).

These Bessel functions of imaginary argument (but real ν) are calledmodified

Bessel functions. A standard basis consists of two functions called Iν(z) and
Kν(z), chosen to behave somewhat like sinh z and e−z, respectively.

Definitions:

Iν(z) ≡ i−νJν(iz),

Kν(z) ≡
π

2
iν+1H(1)

ν
(iz).

Behavior at small argument (z → 0):
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Iν(z) ≈
1

ν!

(z

2

)ν

,

Kν(z) ≈
1

2
(ν − 1)!

(z

2

)−ν

,

K0(z) ≈ − ln z.

Behavior at large argument (z → +∞):

Iν(z) ≈
ez√
2πz

,

Kν(z) ≈
√

π

2z
e−z.

In summary, Iν is designed to vanish at 0, whereasKν is designed to vanish at
infinity. (But the arbitrary constant factors in the definitions arose by historical
accidents that are not worth wondering about.)
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An application of modified Bessel functions will be given later.

Bessel functions of imaginary order ν appear in separation of variables in
hyperbolic coordinates,

t = r sinh θ,

x = r cosh θ
or

t = r cosh θ,

x = r sinh θ.

(The first of these transformations of variables can be related to the “twin para-
dox” in special relativity. The two apply to different regions of the t–x plane.) If
you apply such a transformation to the Klein–Gordon equation,

∂2u

∂t2
− ∂2u

∂x2
+m2u = 0,

you will get for the r dependence a Bessel equation with imaginary ν and real or
imaginary ω (depending on which of the two hyperbolic transformations you’re
using). Therefore, the solutions will be either Jiκ or Kiκ functions.
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Many ordinary differential equations are Bessel’s equation in disguise. That
is, they become Bessel’s equation after a change of dependent or independent
variable, or both. One example is the deceptively simple-looking equation

d2u

dx2
+ xu = 0,

whose solutions are called Airy functions. If you let

y ≡ 2
3x

3

2 , u ≡ x
1

2Z,

then you get
d2Z

dy2
+

1

y

dZ

dy
+

(

1− 1

9y2

)

Z = 0,

the Bessel equation of order ν = 1
3 . Therefore, the Airy functions are essentially

Bessel functions:
u =

√
xZ 1

3

(

2
3x

3

2

)

.
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