
Math. 412 (Fulling) 14 December 2015

Final Examination – Solutions

Calculators may be used for simple arithmetic operations only!

Some possibly useful information

Laplacian operator in polar coordinates:

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
.

Laplacian operator in spherical coordinates (“physicists’ notation”):

∇2u =
1

r2

∂

∂r

(

r2
∂u

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂u

∂θ

)

+
1

r2 sin2 θ

∂2u

∂φ2
.

Spherical harmonics satisfy

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

Ym
l (θ, φ) = −l(l + 1)Ym

l (θ, φ).

Bessel’s equation:

∂2Z

∂z2
+

1

z

∂Z

∂z
+

(

1− n2

z2

)

Z = 0 has solutions Jn(z) and Yn(z) .

∂2Z

∂z2
+

2

z

∂Z

∂z
+

(

1− l(l + 1)

z2

)

Z = 0 has solutions jl(z) and yl(z) .

Legendre’s equation:

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+ l(l + 1)Θ = 0 has a nice solution Pl(cos θ) .

Airy’s equation:
∂2y

∂z2
− zy = 0 has solutions Ai(z) and Bi(z) .

Famous Green function integrals:

1

2π

∫ ∞

−∞
eikx e−k2t dk =

1√
4πt

e−x2/4t,
1

2π

∫ ∞

−∞
eikx e−|k|y dk =

1

π

y

x2 + y2
.
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1. (30 pts.) Classify each equation as

(i) elliptic, hyperbolic, or parabolic,
and

(ii) linear homogeneous, linear nonhomogeneous, or nonlinear.

(a)
∂2u

∂t2
− ∂2u

∂x2
+

(

∂u

∂x

)2

+ t2 − x2 = 0

nonlinear, hyperbolic

(b)
∂2u

∂x2
+

∂2u

∂y2
+ e−(x−y)2 = 0

linear nonhomogeneous, elliptic

(c)
∂u

∂t
+

∂u

∂x
− ∂2u

∂x2
+ x2u = 0

linear homogeneous, parabolic

In any remaining problems that involve spherical coordinates, their range is al-
ways the whole sphere,

0 < θ < π, −π < φ ≤ π (or equivalent).

I reiterate that the meanings of θ and φ are reversed compared to Haberman’s
book.

2. (40 pts.) Solve the heat equation in a ball,

∇2u =
∂u

∂t
for 0 ≤ r < R, 0 < t < ∞,

u(R, θ, φ, t) = 0, u(r, θ, φ, 0) = f(r, θ, φ).

(The spherical harmonic notation is strongly advised.)

After separating the time variable we have to solve ∇2uλ = −λuλ with homogeneous Dirichlet
condition on the sphere. The solutions are well known to be Y m

l (θ, φ)jl(ωlnr) , where jl is called

a spherical Bessel function (related to an ordinary Bessel function of order l + 1
2 ), the ωln are the

numbers for which jl(ωlnR) = 0 , and λln = ω2
ln . (Here ln is a pair of indices, not their product.)

Then we can write the general solution

u(r, θ, φ, t) =

∞
∑

l=0

l
∑

m=−l

∞
∑

n=0

ClmnY
m
l (θ, φ)jl(ωlnr)e

−λlnt.

Finally

f(r, θ, φ) =

∞
∑

l=0

l
∑

m=−l

∞
∑

n=0

ClmnY
m
l (θ, φ)jl(ωlnr),

so

Clmn =

∫ π

−π
dφ
∫ π

0
dθ
∫ R

0
dr r2 sin θ jl(ωlnr)Y

m
l (θ, φ)∗f(r, θ, φ)

∫ R

0
jl(ωlnr)2 r2 dr

.
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3. (50 pts.)

(a) Solve by separation of variables or an equivalent transform technique:

∂2u

∂x2
+

∂2u

∂y2
= 0 (0 < x < ∞, 0 < y < ∞),

∂u

∂x
(0, y) = 0 (0 < y < ∞), u(x, 0) = f(x) (0 < x < ∞).

We see that we will need a transform on the half-line of x . The boundary condition indicates a Fourier
cosine transform, since the cosines are the eigenfunctions that satisfy the Neumann condition. The
infinite interval in y calls for decaying exponentials. So the expected form of the solution is

u(x, y) =

∫

∞

0

A(k) cos(kx)e−ky dk.

Thus

f(x) =

∫

∞

0

A(k) cos(kx) dk,

so

A(k) =
2

π

∫

∞

0

f(x) cos(kx)dx.

(b) Find the Green function that gives the solution to (a) in the form

u(x, y) =

∫ ∞

0
G(x, z, y)f(z) dz .

(There are two methods. Do evaluate the integral if your method leads to one.)

Substituting the formula for A into the one for u , we get

u(x, y) =

∫

∞

0

2

π

∫

∞

0

f(z) cos(kz)dz cos(kx)e−ky dk

=

∫

∞

0

dz f(z)

[

2

π

∫

∞

0

dk cos(kz) cos(kx)e−ky

]

.

So the object in the brackets is the Green function. Using cos(kz) = 1
2 (e

ikz + e−ikz) etc., you can
reduce this to integrals that can be evaluated by the second “famous Green function” formula. The
result will be the same as the one I shall now get by the image method.

Alternative method: Remember that the second “famous Green function integral”, with x re-
placed by x − z , is the Green function for the similar problem with f(z) given on the entire real
line. For the half-line with the homogeneous Neumann condition at the end, the Green function is
obtained by adding the effect of an image source at −z instead of z :

G(x, z, y) =
1

π

[

y

(x− z)2 + y2
+

y

(x+ z)2 + y2

]

.
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4. (40 pts.) Solve Laplace’s equation in the region between two concentric spheres:

∇2u = 0 for 1 < r < 3 ,

∂u

∂r
(1, θ, φ) = 0, u(3, θ, φ) = f(θ) (independent of φ ).

(Note that φ is the azimuthal angle, not the polar one.)

Again we have spherical harmonics, but this time the radial solution involves rl and r−(l+1) , not
Bessel functions. Which linear combination satisfies the homogeneous boundary condition?

R(r) = Arl +Br−(l+1),

0 = R′(1) = lA− (l + 1)B.

Of course we can only determine the ratio at this point, so take A = 1 , B = l
l+1 .

u(r, θ, φ) =

∞
∑

l=0

l
∑

m=−l

ClmY m
l (θ, φ)

[

rl +
l

l + 1
r−(l+1)

]

.

But because there is no φ dependence, only m = 0 contributes:

u(r, θ, φ) =

∞
∑

l=0

ClY
0
l (θ, φ)

[

rl +
l

l + 1
r−(l+1)

]

.

(This could also be written in terms of Pl(cos θ) , but the spherical harmonic notation automatically
takes care of the normalization factor.) Then

f(θ) =

∞
∑

l=0

ClY
0
l (θ, φ)

[

3l +
l

l + 1
3−(l+1)

]

.

(The spherical harmonic here is actually independent of φ and is some multiple of Pl(cos θ) . Also,
it is real.) So

Cl =
2π
∫ π

0
dθ sin θ Y 0

l (θ, φ)f(θ)

3l + l
l+1 3−(l+1)

.
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5. (40 pts.) Using Fourier series, solve this modified wave equation on a circle (with periodic
boundary conditions):

∂2u

∂t2
+ tu =

∂2u

∂x2
(1 < t < ∞, −π < x ≤ π),

u(x, 1) = f(x),
∂u

∂t
(x, 1) = g(x).

(If you don’t know the solutions for the time dependence, give them convenient names
and proceed.)

Since this one involves a nonstandard operator, it is prudent to go through the whole separation of
variables from the beginning. Let usep = X(x)T (t) . Then XT ′′ + tXT = X ′′T , so

T ′′ + tT

T
=

X ′′

X
= −λ.

The spatial (angular!) equation is X ′′ = −λX , and because of the periodicity we must have

λ = n2 (for integer n ) and

Xn = einx (n = 0,±1,±2, . . .)

or, alternatively,

Xn = sin(nx) (n = 1, 2, . . .) or cos(nx) (n = 0, 1, . . .).

I will use the exponential form because it calls for less typing.
The time equation is T ′′ + tT = −n2T . It is second-order, linear, homogeneous, so it has a

two-dimensional vector space of solutions. In other words, any solution is a linear combination of
two basis solutions. Furthermore, the equation is nonsingular, so each solution can be characterized
by its initial data at t = 1 . (In this problem the initial time was chosen to be 1 instead of 0 just
to keep the coefficient t from changing sign in the region of interest, but that turns out not to be
very important.) Let’s introduce the notation p and q for the solutions with the data

p(1) = 1, p′(1) = 0, q(1) = 0, q′(1) = 1.

These functions also depend on λ = n2 , so they should carry a subscript n ; but pn and p−n are
the same thing, and the same for q .

Now we write the general solution. For each λ there are four independent solutions, each of
which needs a yet-to-be-determined coefficient:

u(x, t) =

∞
∑

n=−∞

[

Anpn(t)e
inx +Bnqn(t)e

inx
]

.

(If you use the trigonometric basis, you must literally write four terms:

u(x, t) =

∞
∑

n=0

[

anpn(t) cos(nx) + bnqn(t) cos(nx) + cnpn(t) sin(nx) + dnqn(t) sin(nx)
]

.
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Recall that writing the most general solutions of the X equation and the T equation and multiplying
them does not give the correct (linear) construction.)

Determine the coefficients by imposing the initial conditions:

f(x) =

∞
∑

n=−∞

Ane
inx, g(x) =

∞
∑

n=−∞

Bne
inx.

Therefore,

An =
1

2π

∫ π

−π

e−inxf(x)dx, Bn =
1

2π

∫ π

−π

e−inxg(x) dx.

Finally, can we say anything about what an and bn are? Try introducing a new variable
τ = −(t + n2) . This transforms the T equation to T ′′ − τT = 0 (where the primes now indicate
derivatives with respect to τ — but the second derivative is the same for either variable). This
is Airy’s equation. So we know that pn(t) and qn(t) are certain linear combinations of the Airy

fuctions Ai(−t − n2) and Bi(−t − n2) . To find the coefficients in these linear combinations we
would need to use a table or a computer program to find the values of the Airy functions and their
derivatives at all the points z = −(n2 + 1) .


