Fourier Series

Now we need to take a theoretical excursion to build up the mathematics
that makes separation of variables possible.

PERIODIC FUNCTIONS

Definition: A function f is periodic with period p if

f(x+p)= f(x) forall z.

Examples and remarks: (1) sin(2z) is periodic with period 2 — and also
with period 7 or 4. (If p is a period for f, then an integer multiple of p is also
a period. In this example the fundamental period — the smallest positive period
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—is 7.) (2) The smallest common period of {sin(2z), sin(3z), sin(4x), ... } is 2.
(Note that the fundamental periods of the first two functions in the list are m and
27 /3, which are smaller than this common period.) (3) A constant function has
every number as period.

The strategy of separation of variables raises this question:

Is every function with period 27 of the form*

(%) f(z) =aop+ Z lan cos(nz) + by, sin(nzx)] |7

n=1

* Where did the cosines come from? In the previous example we had only sines,

because we were dealing with Dirichlet boundary conditions. Neumann conditions would
lead to cosines, and periodic boundary conditions (for instance, heat conduction in a
ring) would lead to both sines and cosines, as we’ll see.



(Note that we could also write (x) as

(0 @]
f(x) = Z lan, cos(nz) + by, sin(nz)],
n=0
since cos(0x) = 1 and sin(0z) = 0.)
More precisely, there are three questions:
1. What, exactly, does the infinite sum mean?
2. Given a periodic f, are there numbers a,, and b,, that make (x) true?

3. If so, how do we calculate a,, and b,, 7

It is convenient to answer the last question first. That is, let’s assume (x)
and then find formulas for a,, and b,, in terms of f. Here we make use of the ...
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Orthogonality relations: If n and m are nonnegative integers, then

/ sin(nx) dz = 0;

— T

/W cos(n:c)d:c:{o ifn #0,

2 if n = 0;

/ sin(nx) cos(mz) dx = 0;

—T

0 ifn#m,
/ sin(nx) sin(mz) dr = .
m if n=m #0;

0 ifn#m,
/ cos(nx) cos(mz) dr = ,
m ifn=m=#0.
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Proof: These integrals are elementary, given such identities as
2sin @ sin ¢ = cos( — ¢) — cos(0 + ¢).
Now multiply (%) by cos(mx) and integrate from —7 to m. Assume tem-

porarily that the integral of the series is the sum of the integrals of the terms.
(To justify this we must answer questions 1 and 2.) If m # 0 we get

/7r cos(mx) f(z)dxr = ag /7T cos(mx) dz

+Zan/ cos(mx) cos(nzx) dx + Zb / cos(mx) sin(nz) dx
n=1 -
= Ty, .
We do similar calculations for m = 0 and for sin(maz). The conclusion is: If f
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has a Fourier series representation at all, then the coefficients must be

1 T

ao = o » f(x) dz,
ap = %/_W cos(nz) f(z) dx,

by = / " sin(nz) £(z) da.

T —T

Note that the first two equations can’t be combined, because of an annoying
factor of 2. (Some authors get rid of the factor of 2 by defining the coefficient ag
differently:

70 an cos(nz) + by, sin(nz)]. (* NO ¥)
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In my opinion this is worse.)

Example: Find the Fourier coefficients of the function (“triangle wave”)
which is periodic with period 27 and is given for —7 < x < 7 by f(z) = |z|.




Ty :/ |x| cos(nz) dx

—Tr

= /O (—x) cos(nx) dx + /07T x cos(nx) dz.

—Tr

In the first term, let y = —x:

Ty = 2/ x cos(nx) dx
0

Z _ /0 " sin(nz) d:r]

T

_ % [x sin(nz)

(=1

n

2
— O —_ —
- cos(nx)

= % (cos(nm) —1).
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Thus

— i if n is odd.

mn?

{ 0 if n is even (and not 0),
apn, =

Similarly, one finds that ag = g . Finally,

by, = /O (—x) sin(nz) dr + /07T x sin(nx) dx.

—T

Here the first term equals fow y sin(—ny) dy, but this is just the negative of the
second term. So b, = 0. (This will always happen when an odd integrand is
integrated over an interval centered at 0.)
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Putting the results together, we get

T —4
~ — — 2k + 1
fl@)~ 5+ kzzo T(2k + 1)2 cos|(2k + 1)z]
T 4 1 1
=5 = [cos:r tyg cos(3x) + 7 cos(hz) + - -

(The symbol “~” is a reminder that we have calculated the coefficients, but
haven’t proved convergence yet. The important idea is that this “formal Fourier
series” must have something to do with f even if it doesn’t converge, or converges
to something other than f.)

It’s fun and informative to graph the first few partial sums of this series with
suitable software, such as Maple. By taking enough terms of the series we really
do get a good fit to the original function. Of course, with a finite number of
terms we can never completely get rid of the wiggles in the graph, nor reproduce
the sharp points of the true graph at x = nr.
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FOURIER SERIES ON A FINITE INTERVAL

If f(x) is defined for —m < & < 7, then it has a periodic extension to all z:
just reproduce the graph in blocks of length 27 all along the axis. That is,

f(x £ 27mn) = f(z) for any integer n.

If f is continuous on —7 < x < 7, then the periodic extension is continuous
if and only if

lim f(z) = f(—m) = f(r) = lim f(z).

xl—m T

(Here the operative equality (the target of “if and only if”) is the middle one.
The left one is a definition, and the right one is a consequence of our continuity
assumption. The notation lim,4, means the same as lim, .-, etc.) This issue of
continuity is important, because it influences how well the infinite Fourier series
converges to f, as we’ll soon see.
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The Fourier coefficients of the periodically extended f,

/ " cos(nz) f(z)dr  and / " sin(nz) £(z) da,

— T — T

are completely determined by the values of f(x) in the original interval (—m, 7]
(or, for that matter, any other interval of length 2 — all of which will give
the same values for the integrals). Thus we think of a Fourier series as being
associated with

(1) an arbitrary function on a finite interval
as well as
(2) a periodic function on the whole real line.

Still another approach, perhaps the best of all, is to think of f as
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(3) an arbitrary function defined on a circle

with = as the angle that serves as coordinate on the circle. The angles = and
x + 2mn represent the same point on the circle.

In particular, m and —7 are the same point, no different in principle from any
other point on the circle. Again, f (given for x € (—m, «]) qualifies as a continuous
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function on the circle only if f(—m) = f(m). The behavior f(—m) # f(7) counts
as a jump discontinuity in the theory of Fourier series.

Caution: The periodic extension of a function originally given on a finite in-
terval is not usually the natural extension of the algebraic expression that defines
the function on the original interval. The Fourier series belongs to the periodic
extension, not the algebraic extension. For example, if f(z) = 22 on (—m, 7|, its

Fourier series is that of
|\ | /I\ ! /|\ | /I
—Tr ™ 27

(axes not to scale!) and has nothing to do with the full parabola,

f(z) =2* for all z.

The coefficients of this scalloped periodic function are given by integrals such as
f:r cos(max) 22 dx. If we were to calculate the integrals over some other interval
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of length 27, say fozw cos(max) 2 dx, then we would get the Fourier series of a
very different function:

1 - T 2m

This does not contradict the earlier statement that the integration interval is
irrelevant when you start with a function that is already periodic.
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EVEN AND ODD FUNCTIONS

An even function satisfies

Examples: cos, cosh, z2".
An odd function satisfies
f(-2) = ~f().
2n+1.

Examples: sin, sinh, x

In either case, the values f(x) for x < 0 are determined by those for x > 0
(or vice versa).
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Properties of even and odd functions (schematically stated):
(1) even + even = even; odd + odd = odd; even + odd = neither.

In fact, anything = even + odd:

f(@) = 3lf (@) + f(=2)] + 5[f (@) — f(=2)].

N[

In the language of linear algebra, the even functions and the odd functions
each form subspaces, and the vector space of all functions is their direct sum.

(2) even x even = even; odd X odd = even; even x odd = odd.
(3) (even)’ = odd; (odd)" = even.
(4) [ odd = even; [ even = odd + C.
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Theorem: If f is even, its Fourier series contains only cosines. If f is odd,
its Fourier series contains only sines.

Proof: We saw this previously for an even example function. Let’s work it
out in general for the odd case:

Ty = f(x) cos(nz) dx

0

= f( ) cos(nz) daz+/ f(x) cos(nx) dx

/f cos(—ny dy+/ f(x) cos(nx) dx
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by, E/ f(x) sin(nx) dz

= /O f(x) sin(nx) dx + /O7r f(x) sin(nx) dz

—Tr

-/ " (~y) sin(—ny) dy + / " f(x) sin(ne) da
— 9 /O " f(z) sin(nz) da.

This was for an odd f defined on (—m, 7). Given any f defined on (0,7),
we can extend it to an odd function on (—m, 7). Thus it has an Fourier series
consisting entirely of sines:
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Z by, sin(nz)

where b, / f(x) sin(nx) dz

forodd fon —m <z <
orany fon(<ux<m.

Similarly, the even extension gives a series of cosines for any f on 0 < x < 7.
This series includes the constant term, n = 0, for which the coefficient formula
has an extra factor =. The formulas are
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x) ~ Z a, cos(nw)

where a, = / f(x) cos(nx)dx for n >0,

— [ st

foreven fon —m<x<m

orany fon(<ux<m.

For an interval of arbitrary length, L, we let x = wy/L and obtain
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fly) = < ) Zb sin

where b, / fly sin—dy

forodd fon —L <y <L
orany fon0<y< L.

To keep the formulas simple, theoretical discussions of Fourier series are con-
ducted for the case L = m; the results for the general case then follow trivially.

Summary: Given an arbitrary function on an interval of length K, we can
expand it in

(1) sines or cosines of period 2K (taking K = L, interval = (0, L)),
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or
(2) sines and cosines of period K (taking K = 2L, interval = (—L, L)).

In each case, the arguments of the trig functions in the series and the coefficient
formulas are
mry = integer.
7 > m=in
Which series to choose (equivalently, which extension of the original function)
depends on the context of the problem; usually this means the type of boundary

conditions.

CoMPLEX FOURIER SERIES

A quick review of complex numbers:

i=+/—1.
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Every complex number has the form z = x + 4y with x and y real. To manipulate
these, assume that > = —1 and all rules of ordinary algebra hold. Thus

(a+1ib) + (c+1id) = (a+¢) +i(b+ d);

(a +ib)(c +id) = (ac — bd) + i(bc + ad).

We write x = Re z, y = Im z2;

|z| = v/ x? + y? = modulus of z;

* = 2 — iy = complex conjugate of z.

z

Note that
(Zl + Zz)* = 2%+ 22*, (2122)* = 21 %29%.

Define _
e’ = cosf + isinf (0 real);
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then

e? — ex-Hy
= e%e
= e“(cosy + isiny);
{ew’ =1 iffisreal; €*T2™ =¢
' _ _ » . o1 ;
7 - 1, 6@71-/2 =i, e it/2 _ 637m/2 — == 6271'@
)
o 1 » .
(619) —e W =" 7% _—(cosh—isinb;
619
0 —i0 . 10 —1i0
cosf =— (e +e sinf = — (e €
2 ( )7 21 ( )
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Remark: Trig identities become trivial when expressed in terms of e?, hence
easy to rederive. For example,

(eie +6—i9)2
(2 42 4+ ¢=2i0)
(cos(20) +1).

cos? 0 =

[N PN

In the Fourier formulas (x) for periodic functions on the interval (—m, ), set

co=ag, Cp= %(an —ibp), C_p = %(an + iby,).

The result is

oo
f(ili') ~ Z Cneinx’
n=—o0

1 [7 :
where ¢, = e f(x)e " dx.

26



(Note that we are now letting n range through negative integers as well as non-
negative ones.) Notice that now there is only one coefficient formula. This is a
major simplification!

Alternatively, the complex form of the Fourier series can be derived from one
orthogonality relation,

0 ifn#m,

1 if n=m.

1 ™

27 ) .

e’L’nZE e—zmx dm — {

As usual, we can scale these formulas to the interval (—L, L) by the variable
change x = my/L.
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