
Fourier Transforms and Problems on Infinite Domains

Let’s consider a heat conduction problem on a semiinfinite space interval:

1

K

∂u

∂t
=

∂2u

∂x2
for 0 < x < ∞ and 0 < t < ∞.

The left end of the bar is insulated, so

∂u

∂x
(0, t) = 0 for 0 < t < ∞.

The initial temperature is

u(x, 0) = f(x) for 0 < x < ∞.

When we try to solve this problem by separation of variables, we get as usual

X ′′ = −λX, T ′ = −λKT .
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If we set λ = ω2, the solutions of the X equation are

X(x) = A cos(ωx) +B sin(ωx).

The boundary condition X ′(0) = 0 forces B to be 0. We can choose A = 1 and
write the normal mode

uω(x, t) = cos(ωx) e−ω2Kt.

However, there is a major difference between this problem and the others we
have considered: Since there is no second endpoint, there is no second boundary
condition to determine the allowed values of ω. Indeed, all nonnegative values of
ω are possible, and the complete solution u(x, t) satisfying the initial data will
turn out to be an integral over these values, not a sum.* That is why I have

* You may wonder, then, why complex values of ω are not also allowed. A completely
satisfying answer is not possible at the level of technicality appropriate to this course,
but a standard rule of thumb is that solutions that increase exponentially fast at infinity
(cosh(κx) in this case) are not needed as eigenfunctions. We will soon see that the cosine
functions by themselves are sufficient to represent all reasonable initial data.
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labeled the normal mode uω instead of un ; there is no integer variable n in this

type of problem!

Generally speaking, one has the correspondence

Finite interval ⇒ Fourier series (a sum);

Infinite interval ⇒ Fourier transform (an integral).

To see that this formulation is a slight oversimplification, note that a change of
variable like y = lnx can convert a finite interval into an infinite one [(0, 1) into
(−∞, 0)]; obviously if a discrete sum is right in one case it will not become wrong
in the other. (On the other hand, a Fourier series in x will no longer be a Fourier

series in y, but something more general.) But this rule of thumb does apply to
differential equations with constant coefficients and to some others. Note also
that the interval referred to is one on which nonhomogeneous initial or boundary
data are prescribed, not one where a homogeneous condition applies; we will see
some examples of this distinction later.
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Intuitive derivation of the Fourier transform

It is easy to see how a Fourier series “becomes” an integral when the length
of the interval goes to infinity. For this it is most convenient to use the complex-
exponential form of the Fourier series. Recall that for a function on a finite
interval of length 2L, we have

f(x) =
∞
∑

n=−∞

cn e
inπx/L,

cn =
1

2L

∫ L

−L

f(x) e−inπx/L dx.

Let’s write

kn ≡ nπ

L
.
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Then
f(x) =

∑

kn

cn e
iknx.

The numbers kn are called “frequencies” or “wave numbers”. As L increases, the
frequencies become more closely spaced:

∆kn ≡ (n+ 1)π

L
− nπ

L
=

π

L
.

This suggests that for f defined on the whole real line, −∞ < x < ∞, all values
of k should appear.

L = L0

L = 4L0
k

n :

n :

4 5 8 9 12

1 2 3
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To make sense of the limit L → ∞, we have to make a change of variable
from n to k. Let

f̂(kn) ≡ L

√

2

π
cn .

Then

f(x) =

√

π

2

∑

kn

1

L
f̂(kn) e

iknx

=
1√
2π

∑

kn

f̂(kn) e
iknx ∆kn ,

f̂(kn) =
1√
2π

∫ L

−L

f(x) e−iknx dx.

As L → ∞ the first formula looks like a Riemann sum. In the limit we therefore
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expect

f(x) =
1√
2π

∫

∞

−∞

f̂(k) eikx dk,

f̂(k) =
1√
2π

∫

∞

−∞

f(x) e−ikx dx.

Note the surprising symmetry between these two formulas! f̂ is called the
Fourier transform of f , and f is the inverse Fourier transform of f̂ .

Sine and cosine transforms

Of course, this does not solve our example problem. There the allowed func-
tions were cos(kx), not eikx, and we were poised to expand an initial temperature
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distribution, defined for positive x only, in terms of them: If

f(x) ≡ u(x, 0) =

∫

∞

0

A(k) cos(kx) dk,

then

u(x, t) =

∫

∞

0

A(k) cos(kx) e−k2Ktdk

is the solution.

The way to get from exponentials to sines and cosines is basically the same
as in finite Fourier series. First, note that the Fourier transformation we have
derived (for −∞ < x < ∞) can be rewritten in terms of sin(kx) and cos(kx)
(0 ≤ k < ∞) in place of eikx (−∞ < k < ∞). You can easily work out that the
formulas are

f(x) =

∫

∞

0

[A(k) cos(kx) +B(k) sin(kx)] dk,
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A(k) =
1

π

∫

∞

−∞

cos(kx) f(x) dx,

B(k) =
1

π

∫

∞

−∞

sin(kx) f(x) dx.

This is seldom done in practical calculations with functions defined on (−∞,∞),
except by people with a strong hatred for complex numbers.

However, the trigonometric functions become very useful in calculations on
a half-line (semiinfinite interval) with a boundary condition at the end. An ar-
bitrary function on 0 ≤ x < ∞ can be identified with its even extension to the
whole real line. An even function has a Fourier transform consisting entirely of
cosines (rather than sines), and the formula for the coefficient function can be
written as an integral over just the positive half of the line:

f(x) =

∫

∞

0

A(k) cos(kx) dk,
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A(k) =
2

π

∫

∞

0

cos(kx) f(x) dx.

An equally common normalization convention splits the constant factor symmet-
rically between the two formulas:

f(x) =

√

2

π

∫

∞

0

A(k) cos(kx) dk,

A(k) =

√

2

π

∫

∞

0

f(x) cos(kx) dx.

Still other people put the entire factor 2

π into the A 7→ F equation.* In any case,
A is called the Fourier cosine transform of f , and it’s often given a notation such
as f̂c(k) or FC(k).

* Similar notational variations are found for the full (complex-exponential) Fourier
transform.
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It should now be clear how to finish the solution of the heat problem in the
infinite bar with insulated left end.

Correspondingly, there is a Fourier sine transform related to odd extensions
of functions. The formulas are the same except that cos is replaced by sin
everywhere. The sine transform arises naturally in problems where the functions
vanish at the boundary x = 0, and the cosine transform is appropriate when the
derivative vanishes there (as we’ve seen).

Convergence theorems

Our derivation of the Fourier transformation formulas is not a proof that
applying the two formulas in succession really will take you back to the function
f from which you started; all the convergence theorems for Fourier series need to
be reformulated and reproved for this new situation. In fact, since the integrals
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are improper, the function f needs to satisfy some technical conditions before the
integral f̂ will converge at all.

First, let’s state the generalization to Fourier transforms of the pointwise
convergence theorem for Fourier series. To get a true theorem, we have to make
a seemingly fussy, but actually quite natural, technical condition on the function:
Let’s define a function with domain (−∞,∞) to be piecewise smooth if its re-
striction to every finite interval is piecewise smooth. (Thus f is allowed to have
infinitely many jumps or corners, but they must not pile up in one region of the
line.) The Fourier transform is defined by

f̂(k) ≡ 1√
2π

∫

∞

−∞

f(x) e−ikx dx.

Pointwise convergence theorem: If f(x) is piecewise smooth, and

12



∫

∞

−∞

|f(x)| dx < ∞

(f is absolutely integrable, or f ∈ L1(−∞,∞)), then:

a) f̂(k) is continuous.

b) f̂(k) → 0 as |k| → ∞ (but f̂ is not necessarily absolutely integrable itself).
(This is a new version of the Riemann–Lebesgue theorem.)

c) The inverse Fourier transform

1√
2π

∫

∞

−∞

f̂(k) eikx dk

converges pointwise to 1

2
[f(x+) + f(x−)] (just like Fourier series).
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The next theorem treats the variables x and k on a completely symmetrical
basis.

Mean convergence theorem: If f(x) is sufficiently smooth to be inte-
grated, and

∫

∞

−∞

|f(x)|2 dx < ∞

(f is square-integrable, or f ∈ L2(−∞,∞)), then:

a) f̂(k) is also square-integrable. (The integral defining f̂(k) may not converge
at every point k, but it will converge “in the mean”, just like the inversion
integral discussed below.)

b) A Parseval equation holds:
∫

∞

−∞

|f(x)|2 dx =

∫

∞

−∞

|f̂(k)|2 dk.
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(If you define f̂ so that the 2π is kept all in one place, then this formula will
not be so symmetrical.)

c) The inversion formula converges in the mean:

lim
Λ→∞

∫

∞

−∞

dx |f(x)− fΛ(x)|2 = 0

where

fΛ(x) ≡
1√
2π

∫ Λ

−Λ

f̂(k) eikx dk.
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