
How Fourier transforms interact with derivatives

Theorem: If the Fourier transform of f ′ is defined (for instance, if f ′ is in
one of the spaces L1 or L2, so that one of the convergence theorems stated above
will apply), then the Fourier transform of f ′ is ik times that of f .

This can be seen either by differentiating

f(x) =
1√
2π

∫ ∞

−∞

f̂(k) eikx dk

with respect to x, or by integrating by parts in

f̂ ′ (k) =
1√
2π

∫ ∞

−∞

f ′(x) e−ikx dx

(at least if we assume that f(x) → 0 as x → ±∞).
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Similarly, differentiation with respect to k corresponds to multiplication by
−ix.

Corollary: If f ′(x) exists and is in L2, then k f̂(k) is in L2, and conversely,
and similarly with x and k interchanged.

This is another instance of the principle that smoothness properties of f

correspond to various degrees of rapid decrease of f̂ at ∞, and vice versa.

This differentiation property of Fourier transforms can be used to solve linear
differential equations with constant coefficients. Consider the inhomogeneous
ordinary differential equation

d2f

dx2
− λ2f(x) = g(x),

where λ2 > 0 and g is square-integrable and piecewise continuous. Take the
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Fourier transform of both sides:

(ik)2f̂(k)− λ2f̂(k) = ĝ(k).

Therefore,

f̂(k) =
−ĝ(k)

k2 + λ2 ,

and hence

f(x) =
−1√
2π

∫ ∞

−∞

ĝ(k)eikx

k2 + λ2 dk.

(We won’t know how to evaluate this integral, or even whether it can be done
analytically, until we know what g is. Nevertheless, this is a definite formula for
the solution. We’ll return to this formula and press it a little farther later.)

What happened here is that the Fourier transformation converted a differ-
ential equation into an algebraic equation, which could be solved by elementary
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means. Our use of Fourier transforms (and Fourier series) to solve PDEs is really
just an extension of this idea.

Once again, another way of looking at the calculation we have just done is
as an analogue of diagonalizing a matrix. Suppose we want to solve the equation
M~x = ~y, where ~x and ~y are in R2 and M is a 2 × 2 matrix. If we can find a
matrix U for which

M = U−1DU, D =

(
m1 0
0 m2

)
,

then

M−1 = U−1D−1U, D−1 =

( 1
m1

0

0 1
m2

)
.

Then it is trivial to calculate ~y = M−1~x. In our ODE, the analogue of M is the

differential operator d
2

dx2 −λ2 and the analogue of U is the Fourier transformation.
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We are using the fact that the functions eikx are eigenvectors of the differentiation
operation d

dx
, and hence of M .

You may (should!) object that the general solution of this ODE should
contain two arbitrary constants. Indeed, the solution we have found is not the
most general one, but it is the only square-integrable one. (You can easily check
that none of the solutions of the associated homogeneous equation,

d2f

dx2
− λ2f(x) = 0

(with λ2 > 0), are square-integrable, so adding one of them to our solution will
give a solution of the inhomogeneous equation that is not in L2.) The Fourier
calculation in effect takes place entirely within the vector space L2(−∞,∞) (al-
though the eigenfunctions are not themselves members of that space).
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Relation to the Laplace transform

The foregoing may have reminded you of the Laplace-transform technique
for solving ODEs. In fact, the two transforms are closely related.

Suppose f(x) = 0 for x < 0. Then

f̂(k) =
1√
2π

∫ ∞

0

f(x) e−ikx dx.

Recall that the Laplace transform of f is

F (s) =

∫ ∞

0

f(x) e−sx dx.

Allow s to be complex:

s = σ + ik, σ and k real.
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Then

F (s) =

∫ ∞

0

f(x) e−σx e−ikx dx

=
√
2π × Fourier transform of f(x)e−σx (σ fixed).

For “most” f ’s, f(x)e−σx will be square-integrable if σ is sufficiently large,
even if f itself is not square-integrable (e.g., f = polynomial for x > 0). To attain
this result it was crucial that we cut f off below x = 0; when we multiply by
e−σx, σ > 0, what we gain at x = +∞ we lose at −∞. The Laplace transform
(with time in the role of x) is useful for solving initial-value problems, where
the data and solution functions may not fall off to 0 as the time approaches
+∞, but negative values of time are not of interest. (In particular, the Laplace
transform with respect to time can be applied to nonhomogeneous boundary data
that depend on time, so that the steady-state solution technique does not apply.)
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The Fourier inversion formula for fe−σx says

f(x)e−σx =
1

2π

∫ ∞

−∞

F (σ + ik) eikx dk,

or

f(x) =
1

2π

∫ ∞

−∞

F (σ + ik) e(σ+ik)x dk.

In the exponent we recognize the complex variable s ≡ σ + ik. If we do a formal
integration by substitution, taking ds = i dk, we get

f(x) =
1

2πi

∫ σ+i∞

σ−i∞

F (s) esx ds.

In courses on complex analysis (such as Math. 407 and 601), it is shown
that this integral makes sense as a line integral in the complex plane. It provides
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an inversion formula for Laplace transforms. In elementary differential-equations
courses (such as Math. 308) no such formula was available; the only way to invert
a Laplace transform was to “find it in the right-hand column of the table” —
that is, to know beforehand that that function can be obtained as the direct
Laplace transform of something else. The complex analysis courses also provide
techniques for evaluating such integrals, so the number of problems that can be
solved exactly by Laplace transforms is significantly extended.
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k = Im s

σ = Re s

σ =
const.
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In short, the Laplace transform is really the Fourier transform, extended to
complex values of k and then rewritten in a notation that avoids complex numbers
— until you want a formula to calculate the inverse transform, whereupon the
complex numbers come back with a vengeance.

Convolutions, autocorrelation function, and power spectrum

In this course we emphasize the use of the Fourier transform in solving partial
differential equations. The Fourier transform also has important applications in
signal processing and the analysis of data given as a function of a time variable.
Here we take a quick look at some of the tools of that trade.

The Fourier transform of a product of functions is not the product of their
Fourier transforms! Instead, it is easy to show that that transform is a certain
integral involving the transforms of the two factors. This fact is most often used
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in the inverse direction, so that is how I’ll state the formula:

Convolution Theorem: The inverse Fourier transform of f̂1(k)f̂2(k) is

1√
2π

∫ ∞

−∞

f1(u)f2(x− u) du ≡ f1 ∗ f2 .

This integral is called the convolution of f1 and f2 . Note that

f1 ∗ f2 = f2 ∗ f1 ,

although that is not immediately visible from the integral formula.

By manipulating the formulas defining the Fourier transform and its inverse,
it is easy to show the following:

Theorem:
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(a) If g(x) ≡ f(−x), then ĝ(k) = f̂(−k).

(b) if g(x) ≡ f(−x) and f(x) is real-valued, then ĝ(k) = f̂(k)*.

Now take f̂1 = f̂ and f̂2 = f̂* in the convolution theorem and apply the
theorem just stated:

Corollary: If f(x) is real-valued, then the Fourier transform of |f̂(k)|2 is

1√
2π

∫ ∞

−∞

f(u)f(u− x) du.

This integral is called the autocorrelation function of f , because it measures to
what extent values of f at arguments displaced a distance x tend to coincide.
The function |f̂(k)|2 is called the power spectrum of f ; it measures the extent to
which the signal in f is concentrated at frequency k.
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As an application of the convolution theorem, return to the differential equa-
tion f ′′ − λ2f = g and the solution

f(x) =
−1√
2π

∫ ∞

−∞

ĝ(k)eikx

k2 + λ2 dk.

Suppose we knew that

− 1

k2 + λ2 = ĥ(k)

for some particular h(x). Then we could write

f(x) =
1√
2π

∫ ∞

−∞

h(x− t)g(t) dt

— thereby expressing the solution as a single integral instead of two (one to find
ĝ and then one to find f).
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Can we find h? Well, the most obvious way would be to evaluate the inverse
Fourier transform,

h(x) = − 1√
2π

∫ ∞

−∞

eikx

k2 + λ2 dk.

Unfortunately, one needs some theorems of complex analysis to evaluate this.
Fortunately, I know the answer:

h(x) = − 1

λ

√
π

2
e−λ|x| (if λ > 0).

It can be verified by elementary means (see the next section) that this h satisfies

ĥ(k) ≡ 1√
2π

∫ ∞

−∞

h(x) e−ikx dx = − 1

k2 + λ2 .

So we end up with

f(x) = − 1

2λ

∫ ∞

−∞

e−λ|x−t|g(t) dt. (∗)
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The function h, by the way, is called a Green function for this problem. It
plays the same role as the matrix M−1 in the two-dimensional algebraic analogue.

Here is a way to check that (∗) is correct.

(1) Find the general solution of f ′′ − λ2f = g by “variation of parameters”
(see your differential equations textbook, or “Example 2” in the discussion
of delta and Green functions below). The answer contains two arbitrary
constants and some integrals that are beginning to look like (∗).

(2) Determine the arbitrary constants by requiring that f be square-integrable.
Then combine terms to get exactly (∗).

The uncertainty principle

If f(x) is sharply peaked, then f̂(k) must be spread out; if f̂(k) is sharply

15



peaked, then f(x) must be spread out. A precise statement of this principle is:

∫ ∞

−∞

(x− x0)
2|f(x)|2 dx ·

∫ ∞

−∞

(k − k0)
2|f̂(k)|2 dk ≥ 1

4
‖f‖4

for any numbers x0 and k0 .

The proof appears in many textbooks of quantum mechanics, or in (for
example) Dym and McKean, Fourier Series and Integrals, pp. 119–120. It uses
the Schwarz inequality and the Parseval identity.

In quantum mechanics, when f is a wave function (in a unit system with
Planck’s constant h̄ = 1), |f(x)|2 is the probability density for finding a particle

at x and |f̂(k)|2 is the probability density for measuring the particle’s momentum
to be k. The uncertainty principle is the mathematical reason why the position
and momentum can’t simultaneously be determined to arbitrary accuracy.
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There is also a classical interpretation: Let x be time and f an electrical
signal. Then f̂(k) is its frequency spectrum. The uncertainty principle says
that a pulse of brief duration must be composed of a wide spectrum of different
frequencies; or that to qualify as truly monochromatic, a signal or wave must last
for a long time.
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