
Green Functions

Here we will look at another example of how Fourier transforms are used
in solving boundary-value problems. This time we’ll carry the solution a step
further, reducing the solution formula to a single integral instead of a double one.

Laplace’s equation in the upper half-plane

Let the ranges of the variables be

−∞ < x < ∞, 0 < y < ∞.

Consider the equation

PDE:
∂2u

∂x2
+

∂2u

∂y2
= 0,
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with the boundary data

BC: u(x, 0) = f(x).

This equation might arise as the steady-state problem for heat conduction in a
large plate, where we know the temperature along one edge and want to simplify
the problem by ignoring the effects of the other, distant edges. It could also arise
in electrical or fluid-dynamical problems.

It turns out that to get a unique solution we must place one more condition
on u: it must remain bounded as x or y or both go to infinity. (In fact, it will
turn out that usually the solutions go to 0 at ∞.) Excluding solutions that grow
at infinity seems to yield the solutions that are most relevant to real physical
situations, where the region is actually finite. But it is the mathematics of the
partial differential equation that tells us that to make the problem well-posed we
do not need to prescribe some arbitrary function as the limit of u at infinity, as
we needed to do in the case of finite boundaries.
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Separating variables for this problem at first gives one a feeling of déjà vu:

usep(x, y) = X(x)Y (y) ⇒ 0 = X ′′Y +XY ′′;

− X ′′

X
= λ =

Y ′′

Y
;

write λ as k2. The remaining steps, however, are significantly different from the
case of the finite rectangle, which we treated earlier.

If λ 6= 0, the solution of the x equation can be

X(x) = eikx,

where any k and its negative give the same λ. The condition of boundedness
requires that k be real but does not further restrict it! Taking k = 0 yields the
only bounded solution with λ = 0. Therefore, we take the X in each separated
solution to be eikx for some real k. The corresponding λ will be positive or zero.
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Turning now to the y equation, we see that Y is some linear combination of
eky and e−ky. For boundedness we need the exponent to be negative, so we write

Y (y) = e−|k|y (= e−
√
λ y)

to get an expression that’s valid regardless of whether k is positive or negative.

We are now finished with the homogeneous conditions, so we’re ready to
superpose the separated solutions. Since k is a continuous variable, “superpose”
in this case means “integrate”, not “sum”:

u(x, y) =

∫ ∞

−∞
dk c(k) eikxe−|k|y.

Here c(k) is an arbitrary function, which plays the same role as the arbitrary
coefficients in previous variable separations. The initial condition is

f(x) =

∫ ∞

−∞
dk c(k) eikx.
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Comparing with the formula for the inverse Fourier transform, we see that c(k) =
1√
2π

f̂(k). That is,

c(k) =
1

2π

∫ ∞

−∞
f(x) e−ikx dx.

In other words, the solution can be written

u(x, y) =
1√
2π

∫ ∞

−∞
dk f̂(k) eikxe−|k|y.

A Green function for Laplace’s equation

We can get a simpler expression for u in terms of f by substituting the
formula for f̂ into the one for u. But to avoid using the letter x to stand for two
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different things in the same equation, we must first rewrite the definition of the
Fourier transform using a different variable:

f̂(k) =
1√
2π

∫ ∞

−∞
dz e−ikz f(z) .

Then

u(x, y) =
1

2π

∫ ∞

−∞
dk

∫ ∞

−∞
dz eik(x−z)e−|k|y f(z).

We’ll evaluate this multiple integral with the k integral on the inside. (This step
requires some technical justification, but that is not part of our syllabus.) The
inner integral is

6



∫ ∞

−∞
dk eik(x−z)e−|k|y =

∫ 0

−∞
dk eik(x−z)eky +

∫ ∞

0

dk eik(x−z)e−ky

=
eik(x−z−iy)

i(x− z − iy)

∣

∣

∣

∣

0

−∞
+

eik(x−z+iy)

i(x− z + iy)

∣

∣

∣

∣

∞

0

=
1

i(x− z − iy)
− 1

i(x− z + iy)

=
2y

(x− z)2 + y2
.

Thus

u(x, y) =
1

π

∫ ∞

−∞
dz

y

(x− z)2 + y2
f(z). (∗)

The function

G(x− z, y) ≡ 1

π

y

(x− z)2 + y2
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is called a Green function for the boundary-value problem we started from. It is
also called the kernel of the integral operator

u = G(f)

defined by (∗). The point of (∗) is that it gives the solution, u, as a function of
the boundary data, f .

In principle, Green functions exist for the boundary-value problems on finite
regions which we have solved earlier. However, in those cases the G is given by
an infinite sum arising from the Fourier series, rather than the integral which
expresses G in a Fourier-transform problem. Typically, such sums are harder to
evaluate than the analogous integrals — which is why we have waited until now
to introduce Green functions.
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Gaussian integrals

The Green function for the heat equation on an infinite interval is derived
from the Fourier-transform solution in much the same way. To do that we need
a basic integral formula, which I’ll now derive.

The integral in question is

H(x) ≡
∫ ∞

−∞
eikx e−k2t dk,

where t is positive.

Note first that
d

dk
e−k2t = −2kt e−k2t.
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This will allow us to find a differential equation satisfied byH: From the definition
we calculate

H ′(x) =

∫ ∞

−∞
ik eikx e−k2t dk

=
−i

2t

∫ ∞

−∞
eikx

(

d

dk
e−k2t

)

dk

=
+i

2t

∫ ∞

−∞

(

d

dk
eikx

)

e−k2t dk

=
−x

2t

∫ ∞

−∞
eikx e−k2t dk

= − x

2t
H(x).

Thus
H ′

H
= − x

2t
;
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lnH = − x2

4t
+ const.;

H = C e−x2/4t.

To find the constant we evaluate the integral for x = 0:

C = H(0)

=

∫ ∞

−∞
e−k2t dk

=
1√
t

∫ ∞

−∞
e−q2 dq,

by the substitution q = k
√
t. But it is well known that

∫ ∞

−∞
e−q2 dq =

√
π,
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because its square is

∫∫

R2

e−x2

e−y2

dx dy =

∫ 2π

0

∫ ∞

0

e−r2 r dr dθ

= 2π

∫ ∞

0

e−u 1

2
du

= π.

So

C =

√

π

t
.

Therefore, we have shown that H(x) is

∫ ∞

−∞
eikx e−k2t dk =

√

π

t
e−x2/4t.
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Now I leave it as an exercise* to solve the initial-value problem for the heat
equation for x ∈ (−∞,∞):

∂u

∂t
=

∂2u

∂x2
, (PDE)

u(0, x) = f(x), (IC)

in analogy to our two previous Fourier-transform solutions. You should then find
that the problem is solved by the Green function

G(t, x− z) ≡ 1

2π
H(x− z) =

1√
4πt

e−(x−z)2/4t.

Note also that the formula in the box is also useful for evaluating similar
integrals with the roles of x and k interchanged. (Taking the complex conjugate
of the formula, we note that the sign of the i in the exponent doesn’t matter at
all.)

* Or peek at Haberman, Sec. 10.2.
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