Spherical Coordinates and Legendre Functions

SPHERICAL COORDINATES

Let’s adopt the notation for spherical coordinates that is standard in physics:

¢ = longitude or azimuth,

™

6 = colatitude (5 — latitude) or polar angle.

x = rsinf cos ¢, 0

y = rsin @ sin ¢,

2z = rcosé. /</\\ﬂ
& ¢



The ranges of the variables are: 0 < r < 0o, 0 < 6 < 7, and ¢ is a periodic
coordinate with period 2.

The Laplacian operator is found to be
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The term with the r-derivatives can also be written
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As usual, we try to separate variables by writing
Usep — R(T)@(e)q)(gb)
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We get
r?Viu  (r’R'Y 1 (sing®") 1 @

v R +Sin(9 ) +sir120 o
(Here the primes in the first term indicate derivatives with respect to 7, those in
the second term derivatives with respect to 6, etc. There is no ambiguity, since
each function depends on only one variable.) We have arranged things so that the
first term depends only on r, and the others depend on r not at all. Therefore,
we can introduce a separation constant (eigenvalue) into Laplace’s equation:

(r*R") g ! (sinfg ©") N 1 9o
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Put the r equation aside for later study. The other equation is
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We can introduce a second separation constant:

(b// . . \/
-3 = m? = smﬁ(s;l@@) + K sin? 6.

Remark: In quantum mechanics, K has the physical interpretation of the
square of the total angular momentum of a particle, while m is the component of
angular momentum about the z axis.

Just as in two dimensions, problems involving the whole sphere will be
different from those involving just a sector. If the region involves a complete
sphere, then ®(¢) must be 27-periodic. Therefore, m is an integer, and ® is
A cos(me) + Bsin(me) (or Ce'® +C_e~*). Then we can write the § equation

as
2

sin 6
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sin“ 6
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This is an eigenvalue problem for K. Recall that the proper interval (for the
whole sphere) is 0 < 8 < m. We have a Sturm—Liouville problem, singular at
both endpoints, 0 and 7, with weight function r(6) = sin 6.

Introduce a new variable by x = cosf and ©(0) = Z(x) = Z(cos ). (This
is not the same as the Cartesian coordinate x.) Then the equation transforms to
the purely algebraic form

d*Z dz m?
Y W) T _
(1—2a7) 2z + [K [ .2
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on the interval —1 < & < 1. The first two terms can be combined into

% [(1—&)2—5] :

Since dr = —sin 0 df, the weight factor is now unity.
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If m = 0, this equation is called Legendre’s equation and the solutions are
Legendre functions. Solutions of the equation with m # 0 are associated Legendre
functions.

We concentrate first on m = 0. (This means that we are looking only at
solutions of the original PDE that are rotationally symmetric about the z axis
— i.e., independent of ¢.) We now get the payoff from a problem that you
may have studied in differential equations or in linear algebra or both. When
the equation is solved by power series (method of Frobenius), one finds that if
K =1(l + 1), where [ is a nonnegative integer, then there is one solution (of the
two independent ones) that is a polynomial — the Frobenius series terminates.
These are called the Legendre polynomials, P;(x), and a totally different way of
stumbling upon them is to apply the Gram—Schmidt orthogonalization procedure
to the sequence of powers, {1,z,22, ...}, regarded as functions on the interval
[—1,1] with the usual inner product. The first few of them (normalized so that
P(cos0) = P(1) =1) are



PO(x) =1
Pi(z) = z; ©1(6) = cosb
Py(z) = (327 — 1); ©2(0) = 3(3cos® 0 — 1)

P;(x) is a polynomial of degree [. It is given explicitly by Rodrigues’s formula,

1 d

P(x) = 5071 @(

z? — 1)

Just as we required solutions in polar coordinates to be bounded at the origin,
we must require solutions in spherical coordinates to be bounded at the north
and south poles (x = +1). It is a fact that all solutions except the polynomials
P, behave unacceptably at one or the other of the endpoints. In our problem,
therefore, the eigenvalues are the numbers [(I+ 1), and the Legendre polynomials
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are the eigenvectors. The other solutions become relevant in other PDE problems
where the region does not contain the whole sphere (a cone, for instance). When
K =1(l+1) (so that P, exists), another, linearly independent, solution can be
found by the method of reduction of order or the general Frobenius theory [review
your ODE textbook]. It is called Q; .

)=y (172), @ =Fm (1) -1

It’s clear that any linear combination of P and () with a nonzero () component
is singular at the endpoints.

The orthogonality and normalization properties of the Legendre polynomials
are

/1 P(x) Py(x)dx =0 ifl #k,

—1



' 2
/ P(x)dr = ——.
1 204+ 1

Note that f_ll [...2z...]dw is the same as [ [...cos6...] sinfdf. The factor sin6
is to be expected on geometrical grounds; it appears naturally in the volume
element in spherical coordinates,

dV =dxdydz = r? sinf dr df do,
and the surface area element on a sphere,

dS = r¢? sin 6 df do.

Now let’s return to the radial equation,
r(rR)” =1(l+1)R,
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that came out of Laplace’s equation. Its solutions are
R(r) = Art + Br— 71,

(Except for the —1 in the second exponent, this is just like the two-dimensional
case.) We note that one of the basis solutions vanishes as r — 0, the other as
r — 00.

Now we can put all the pieces together to solve a boundary value problem
with no ¢ dependence. (If the problem has this axial symmetry and the solution
is unique, then the solution must also have that symmetry. Clearly, this will
require axially symmetric boundary data.) If the region in question is a ball (the
interior of a sphere), then the form of the general axially symmetric solution is

u(r,0) =Y byr! P(cos).

=0
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If Dirichlet boundary data are given on the sphere, then

£(6) = u(ro,0) = > by rd Pi(cosb)

=0

for all # between 0 and w. Therefore, by the orthogonality and normalization
formulas previously stated,

9+ 1
by =

0) P,(cosf) sin 6 db.
sir [ 10) Pieoso)

If the region is the exterior of a sphere, we would use r~(+1) instead of
r!. For the shell between two spheres, we would use both, and would need data
on both surfaces to determine the coefficients. As always, Neumann or Robin
data instead of Dirichlet might be appropriate, depending on the physics of the
individual problem.
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SPHERICAL HARMONICS

What if the boundary data do depend on ¢ as well as #7 We must generalize
the sum to

00 l
Z Z bim 71 P (cos 0) €™,
=0 m=-—I
where the functions P/™, called associated Legendre functions, are solutions of

m2

1 — 22

(1 —2*)P'] + {l(l +1)— P =0.

The condition of regularity at the poles forces |m| < [, and this constraint has

been taken into account by writing the sum over m from —[ to [. There is a

generalized Rodrigues formula,

—1)ym dl—l—m
207! dxt+tm

" (z) = (2~ 1.
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These provide a complete, orthogonal set of functions on (the surface of) a

sphere. The basis functions most commonly used are called spherical harmonics,
defined by

20+1 (I —m)! |2 :
+ ( m) ] F)lm(COS 9) 6zmqb

A (I 4+ m)!

o) = |

for -l <m < land [l =0, 1, .... The purpose of the complicated numerical
coefficient is to make them orthonormal. Integration over the sphere is done with
respect to the usual area element,

27 ™
/...dﬂz/ d¢/ sinfdf. ...
0 0

Then one has the orthonormality relation

1 ifl’=1and m' =m,

[ aavio.0 v 0.6) = {

0 otherwise.
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The completeness (basis) property is: An arbitrary™ function on the sphere (i.e.,
a function of 6 and ¢ as they range through their standard intervals) can be
expanded as

00 l
9(0,0) = > Am Y™(0,9),
=0 m=-1

where

This, of course, is precisely what we need to solve the potential equation with
arbitrary boundary data on a spherical boundary. But such a way of decomposing
functions on a sphere may be useful even when no PDE is involved, just as the
Fourier series and Fourier transform have many applications outside differential

* sufficiently well-behaved, say square-integrable
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A table of the first few spherical harmonics

Y = —\/ 55 3 sin g e
Yy = \/ 7= cosf
Yl_l—@/ sinf e

Y7 = 4\/ 15 gin? g e2i¢
Y3 :—\/%SIHQCOSHGW)

V= (Feosto— )
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equations. For example, the shape of the earth (as measured by the gravitational
attraction on satellites) is represented by a sum of spherical harmonics, where
the first (constant) term is by far the largest (since the earth is nearly round).
The three terms with [ = 1 can be removed by moving the origin of coordinates
to the right spot; this defines the “center” of a nonspherical earth. Thus the
first interesting terms are the five with [ = 2; their nonzero presence is called the
quadrupole moment of the earth. Similar remarks apply to the analysis of any
approximately spherical object, force field, etc.*

A sensible person does not try to memorize all the formulas about spherical
harmonics (or any other class of special functions). The point is to understand

* See, for example, M. T. Zuber et al., “The Shape of 433 Eros from the NEAR-
Shoemaker Laser Rangefinder,” Science 289, 2097-2101 (2000), and adjacent articles,
for an analysis of a potato-shaped asteroid. There the harmonics with factors eTime
are combined into real functions with factors cosme¢ and sinme, so the five coefficients

for [ = 2 are named Csqg, Ca1, S21, Coa, So2.
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that they exist and why they are useful. The details when needed are looked up
in handbooks or obtained from computer software. Complicated formulas should
not obscure the beauty and power of our march from a basis of eigenvectors in
R?, through Fourier series in one dimension, to this basis of eigenfunctions on a
sphere!

SPHERICAL BESSEL FUNCTIONS

Instead of the potential equation, V?u = 0, consider now the Helmholtz
equation,
Viu = —w?u.

This will arise from the separation of variables in the wave or heat equation in
three dimensions. When we continue the separation in spherical coordinates, the
angular part is exactly the same as before, so the angular dependence of solutions
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of the Helmholtz equation is still given by the spherical harmonics (or Legendre
polynomials, in the axially symmetric case). The radial equation, however, be-

comes

d*R 2@+{w2_l(l+1)

@ T dr ]RZO-

/’/-2

Thus the radial solutions are no longer just powers of r.

Let z = wr, Z(z) = y/z R. Then (another exercise)

2z 1dZ (1+1)+ 3
- 1~ 7 4l 7y_
2 I [ ]

This is Bessel’s equation, with g = [+ % (since (I 4+ 3)? = I(l +1) +
consequent solutions

W=
N—"

R(r) = <= iy 3 (o)

18

. The



are called spherical Bessel functions, with the notation

EENEFE)

Similarly, the other types of Bessel functions have their spherical counterparts,
hl(l), etc

The surprising good news is that these fractional-order Bessel functions are
not an entirely new family of functions. They can all be expressed in terms of
sines and cosines. One has

sin z COS 2

o) =22 e =2

(note that jg is regular at 0 and yg is not, as expected from their definitions),

) ( ) sin z COS 2
Z) = —
J1 22 - 3

19



and, in general,

z

1 d >l coS 2

Notice that for large [ they contain many terms, if all the derivatives are worked
out.

We would naturally want to use these to solve a PDE with a homogeneous
boundary condition on a sphere. As in the case of integer-order Bessel functions,
there will be a normal mode corresponding to each value of z for which j;(2)
vanishes (or its derivative vanishes, if the boundary condition is of the Neumann
type). To find these roots one needs to solve a trigonometric equation, as in the
classic Sturm—Liouville problems; many of the small roots can be looked up in
tables, and there are approximate asymptotic formulas for the large ones. The
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resulting normal modes form a complete, orthogonal set for expanding functions
in the interior of a ball.
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