
Additional Topics on Green Functions

A Green function for the wave equation

It is relatively difficult to work the Fourier-transform solution of the wave
equation into a Green-function form, because the integrals are poorly convergent.
However, we already have a Green-function solution of the initial-value problem
for the wave equation: it is d’Alembert’s solution! Recall that (for c = 1, f(x) ≡
u(0, x), g(x) ≡ ∂u

∂t (0, x)) the solution is

u(t, x) =
1

2
[f(x+ t) + f(x− t)] +

1

2

∫ x+t

x−t

g(z) dz. (1)
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For simplicity consider only the case t > 0. Then (1) can be written

u(t, x) =
1

2

∫ ∞

−∞

dz f(z)[δ(z − x− t) + δ(z − x+ t)]

+
1

2

∫ ∞

−∞

dz g(z)[h(z − x+ t)− h(z − x− t)],

(2)

where h is the unit step function; recall that it satisfies

δ(w) =
dh(w)

dw
.

Now define

G(t, x, z) ≡ 1

2
[h(z − x+ t)− h(z − x− t)],

so that
∂G

∂t
(t, x, z) =

1

2
[δ(z − x+ t) + δ(z − x− t)].
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Then (2) can be rewritten as

u(t, x) =

∫ ∞

−∞

∂G

∂t
(t, x, z)u(0, z) dz +

∫ ∞

−∞

G(t, x, z)
∂u

∂t
(0, z) dz.

(Although we assumed t > 0, this formula also holds for t < 0.)

This particular kind of combination of boundary values and derivatives of
the solution and a Green function is quite characteristic of boundary-value prob-
lems for second-order equations. We’ll see it again in connection with Laplace’s
equation.

Green functions for nonhomogeneous problems

For a variety of historical and practical reasons, this course concentrates
on homogeneous linear PDEs and their (nonhomogeneous) boundary-value prob-
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lems. From a Green-function point of view, however, nonhomogeneous differential
equations are actually more fundamental. We will look briefly at two of these.

The Green function for the heat equation with source

Recall that the solution of the initial-value problem for the homogeneous
heat equation is

u(t, x) =

∫ ∞

−∞

H(t, x, y)f(y) dy (f(x) ≡ u(0, x)),

where

H(t, x, y) =
1√
4πt

e−(x−y)2/4t.

H could be defined as the solution of the initial-value problem

∂H

∂t
=

∂2H

∂x2
, H(0, x, y) = δ(x− y). (4)
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We are now interested in the nonhomogeneous heat equation

∂u

∂t
=

∂2u

∂x2
+ j(t, x) (for t > 0), u(0, x) = 0 (5)

(where we’ve imposed the homogeneous initial condition to make the solution
unique). In view of our experience with ODEs we might expect the solution to
be of the form

u(t, x) =

∫ ∞

−∞

dy

∫ ∞

0

dsG(t, x; s, y)j(s, y), (6)

where G satisfies

∂G

∂t
− ∂2G

∂x2
= δ(t− s)δ(x− y), G(0, x, s, y) = 0 (7)

(i.e., the temperature response to a point source of heat at position y and time s.)
The surprising fact is that G turns out to be essentially the same thing as H.
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To see that, consider

u(t, x) ≡
∫ ∞

−∞

dy

∫ t

0

dsH(t− s, x, y)j(s, y).

It can be proved that differentiation “under the integral sign” is legitimate here,
so let’s just calculate

∂u

∂t
=

∫ ∞

−∞

dy H(0, x, y)j(t, y) +

∫ ∞

−∞

dy

∫ t

0

ds
∂H

∂t
(t− s, x, y)j(s, y),

∂2u

∂x2
=

∫ ∞

−∞

dy

∫ t

0

ds
∂2H

∂x2
(t− s, x, y)j(s, y).

Now use (4) to evaluate the first term in ∂u
∂t

and to observe that the other term

cancels ∂2u
∂x2 when we construct

∂u

∂t
− ∂2u

∂x2
=

∫ ∞

−∞

dy δ(x− y)j(t, y) = j(t, x).
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Also, we have u(0, x) = 0. So our u solves the problem (5). In other words, the
solutions of (5) is (6) with

G(t, x; s, y) =

{

H(t− s, x, y) if s ≤ t,

0 if s > t.

Put the other way around: The Green function that solves the initial-value
problem for the homogeneous heat equation is

H(t, x, y) = G(t, x; 0, y),

where G is the Green function that solves the nonhomogeneous heat equation
with homogeneous initial data (and is defined by (7)). This connection between
nonhomogeneous and homogeneous Green functions is called Duhamel’s principle

(specifically, for the heat equation, and more loosely, for analogous more general
situations).
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The previous result for the wave equation is another instance of this principle:
It can be shown that

Gret(t, x; s, z) ≡ G(t− s, x, z)h(t− s)

= 1
2 [h(z − x+ t− s)− h(z − x− t+ s)]h(t− s)

= 1
2h(t− x)h(t+ x)

is a Green function for the nonhomogeneous wave equation, in the sense that

u(t, x) =

∫ ∞

−∞

dy

∫ t

−∞

dsGret(t, x; s, y)f(s, y)

satisfies
∂2u

∂t2
− ∂2u

∂t2
= f(t, x).

(Here the G(t− s, x, z) is the one previously constructed for the wave equation.)
The subscript “ret” stands for retarded. It means that the effects of the source
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f show up only later in time. (Pictorially, a point source at (s, y) emits a wave
into the forward-pointing space-time cone of points (t, x) with its vertex at the
source. Elsewhere Gret = 0.) Because the wave equation is second-order and
time-symmetric, there are infinitely many other Green functions, corresponding
to different initial conditions. In particular, there is an advanced Green function
that absorbs everything and leaves the space empty of waves at later times.
For thermodynamic reasons the retarded solution is the relevant one in most
applications. (You do not often turn on a flashlight with an incoming wave
already focused on it.)

We shall soon see the Duhamel principle at work for Laplace’s equation, too.

Coulomb fields

The nonhomogeneous version of Laplace’s equation,
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−∇2u = j(x),

is called Poisson’s equation. The corresponding Green function, satisfying

−∇2
(x)G(x,y) = δ(x− y),

has the physical interpretation of the electrostatic field at x created by a point
charge at y. (The subscript “(x)” tells us which variable the operator acts upon.)
In dimension 3, with r ≡ ‖x− y‖, it is well known to be

G(x,y) = G(x− y) =
1

4πr

(times constants that depend on the system of electrical units being used). In
general dimension n (greater than 2, a special case) this becomes

G(x,y) =
C

rn−2
,

10



where [(n − 2)C]−1 is the “surface area” of the unit (n − 1)-sphere. For n = 2
the formula is

G(x,y) = − ln r

2π
= − ln r2

4π
.

Sketch of proof: For r 6= 0 one has in n-dimensional spherical coordinates

∇2 =
∂2

∂r2
+

n− 1

r

∂

∂r
+

∂

∂(angles)
,

so ∇2r2−n = 0, as required. Now the hard part is showing that the function has
the delta behavior at the origin. Let Bǫ be the ball of radius ǫ centered at y, and
let Sǫ be its boundary (a sphere of radius ǫ). If we trust that Gauss’s theorem
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continues to hold if delta functions in the derivatives are taken into account, then
∫

Bǫ

∇2Gdnz =

∫

Sǫ

n̂ · ∇Gdn−1S =

∫

Sǫ

∂G

∂r
dn−1S

= C(2− n)

∫

Sǫ

ǫ1−n ǫn−1 d(angles)

= −(n− 2)C × (area of sphere of unit radius) = −1.
Thus the singularity at the origin has the correct normalization. To make a
real proof one should do two things: (1) We really need to show, not just that
∫

∇2G = −1, but that
∫

∇2G(z)f(z) dnz = −f(0) for all smooth functions f .
This is not much harder than the calculation just shown: Either use “Green’s
symmetric identity” (reviewed in a later subsection), or expand f in a power
series. All the unwanted terms will go to zero as ǫ → 0. (2) Strictly speaking,
the action of ∇2 on G is defined by integration by parts (in the whole space):

∫

Rn

∇2G(z)f(z) dnz ≡
∫

Rn

G(z)∇2f(z) dnz,
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where f is assumed to vanish at infinity. Now apply Gauss’s theorem to the
outside of Sǫ , where we know it is valid, to show that this integral equals −f(0).

The method of images

The image method is a generalization of the solution of the wave equation
by even and odd periodic extensions, except that this time we extend the Green
function instead of the initial data. It is simplest and most intuitive for nonho-
mogeneous equations, but we’ll see that it can easily be extended to homogeneous
equations with initial data. It is easy to treat the Poisson and heat equations
simultaneously and in parallel.

A single Dirichlet or Neumann boundary
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Consider the Poisson Green-function equation

−∇2G(x, z) = δ(x− z)

for x and z in a half-space, with the PDE’s solutions, and hence G, required to
vanish on its boundary (a “perfectly conducting plane” in physics terminology).
Start with the Coulomb potential of the source at z (a positive charge). If we also
place a charge of opposite sign in the mirror-image position opposite the charge
at z, then its Coulomb potential satisfies ∇2u = 0 in the physical region (so it
doesn’t mess up the property −∇2G = δ), and on the boundary its Coulomb field
(gradient) precisely cancels the Coulomb field of the original charge. Success!

⊕z⊖
• xG = 0→

Fictitious

region

Physical

region

.........................................................................................................................................................

..............................................................
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To write this construction down algebraically, we need to choose a good
coordinate system. Consider n = 2 for simplicity; without loss of generality put
z on the x axis, so z = (z, 0); write x = (x, y) with the boundary along the y

axis, x = 0. Then our Green function is

G(x, z) = − 1

4π
ln[(x− z)2 + y2] +

1

4π
ln[(x+ z)2 + y2], (8)

because (x−z)2+y2 is the square of the distance from x to the positive charge and
(x−z)2+y2 is the square of the distance to the fictitious negative charge. Notice
that G(x, z) 6= G(x − z) in this problem, unlike the Coulomb potential and all
the other simple Green functions we have seen for translation-invariant problems.
(This problem is not invariant under translations, because the boundary is fixed
at x = 0.)

The extension of this construction to higher dimensions is easy, but alpha-
betically inconvenient if you insist on using scalar variables. It would be better
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to introduce a notation for the components of vectors parallel and perpendicular
to the boundary.

Similarly, the Green function for the heat equation on a half-line with
u(0, x) = 0 is

H(t, x, y)−H(t, x,−y) = 1√
4πt

[

e−(x−y)2/4t − e−(x+y)2/4t
]

. (9)

This can be shown equal to the Fourier solution

2

π

∫ ∞

0

sin(kx) sin(ky)e−k2t dk. (10)

Function (9) is the Green function for the nonhomogeneous heat equation with
the source at time s = 0 (from which the general case can be obtained by the
substitution t← t− s), but by Duhamel’s principle it is also the Green function

16



for the homogeneous heat equation with initial data given at t = 0, and it is in
that role that we have previously encountered (10).

To solve a Neumann problem at x = 0 (∂u
∂x

= 0 there, so ∂G
∂x

= 0), we simply
add the contribution of the image source instead of subtracting it. This produces
a solution that is even (rather than odd) under reflection through the boundary
plane, and hence its normal derivative (rather than the function itself) vanishes
on the plane.

The periodic case

Suppose we are interested in the initial-value problem for the heat equation
on a ring with coordinate x, −π < x ≤ π. We know that the relevant Green
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function is

K(t, x, y) =
1

2π

∞
∑

n=−∞

ein(x−y)e−n2t (11)

— from substituting

cn =
1

2π

∫ π

−π

e−inyf(y) dy into u(t, x) =

∞
∑

n=−∞

cne
inxe−n2t.

But another way to get such a Green function is to start from the one for the
whole line, H, and add copies of it spaced out periodically:

K(t, x, y) =

∞
∑

M=−∞

1√
4πt

e−(x−y−2πM)2/4t. (12)

Each term of (12) (and hence the whole sum) satisfies the heat equation for t > 0.
As t→ 0 the term with M = 0 approaches δ(x− y) as needed, and all the other
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terms approach 0 if x and y are in the basic interval (−π, π). Finally, the function
is periodic, K(t, x+ 2π, y) = K(t, x, y), as desired.

The functions (11) and (12) are equal, although this is not obvious by in-
spection. Neither sum can be evaluated in closed form in terms of elementary
functions. From a numerical point of view they are useful in complementary do-
mains, because the sum in (12) converges very fast when t is small, whereas the
one in (11) converges best when t is large.

The equality of (11) and (12) is an instance of the Poisson summation for-

mula. This is most easily seen when x = y, so that the equality is

∞
∑

M=−∞

1√
4πt

e−(2πM)2/4t =
∞
∑

n=−∞

1

2π
e−n2t. (13)

Since
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H(t, z) =
1√
4πt

e−z2/4t =
1√
2π

∫ ∞

−∞

eikzĤ(t, k) dk

where Ĥ(t, k) = 1√
2π

e−k2t, (13) is the Poisson relation

∞
∑

M=−∞

H(t, 2πM) =
1√
2π

∞
∑

n=−∞

Ĥ(t, n).

Finite intervals

On the interval (0, L) with Dirichlet boundary conditions at both ends, or
Neumann boundary conditions at both ends, we can get the Green function by
combining the two previous ideas.
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In the Neumann case, reflect the source (at y) through both ends to get
“image charges” at −y and 2L − y. Continue this process indefinitely in both
directions to get an infinite sequence of images that build up the needed even

periodic extension of the delta functions and hence of the Green function and,
ultimately, of the solution of the PDE problem.

x
−2L −L L 2L

yy − 2L y + 2L−y−y − 2L −y + 2L
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In the Dirichlet case the first two images are negative, and thereafter they
alternate in sign so as to build up the odd periodic extensions. (Compare the
end of the previous section, where the corresponding linear combination of delta
functions was sketched.)

Application of Green’s identity

If V is a region in space bounded by a surface S, and u and v are two
functions, then Gauss’s theorem applied to the vector field u∇v − v∇u implies

∫

S

(u∇v − v∇u) · n̂ dS =

∫

V

(u∇2v − v∇2u) d3x. (14)

Here n̂ is the outward unit normal vector on S, so n̂ · ∇u (for example) is the
outward normal derivative of u, the quantity that appears in Neumann boundary
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conditions. In the simple regions we have studied so far, it was always possible to
write the normal derivative as (±) the partial derivative in a coordinate that is
constant on a portion of the boundary. Formula (14) makes sense and holds true
in any dimension, not just 3. It is called Green’s symmetric identity or Green’s

second identity.

Green’s identity has many applications to PDEs, of which we can demon-
strate only one of the simplest. Suppose that G(x,y) is the Green function that
solves the homogeneous Dirichlet problem for the Poisson equation in V :

−∇2
(x)G(x,y) = δ(x− y) for x ∈ V , G(x,y) = 0 for x ∈ S.

Let u(x) be any solution of Laplace’s equation in V : ∇2u = 0. Apply (14) with
G in the role of v:
∫

V

[u(x)∇2G(x,y)−G(x,y)∇2u(x)] d3x =

∫

S

[u(x)∇G(x,y)−G(x,y)∇u(x)]·n̂ dS.

23



By the conditions defining G and u, this reduces to

u(y) =

∫

V

u(x)δ(x− y) d3x = −
∫

S

n̂ · ∇(x)G(x,y)u(x) dS ≡
∫

S

g(y,x)u(x) dS.

This formula expresses u in terms of its Dirichlet data on S. It therefore solves
the nonhomogeneous Dirichlet problem for Laplace’s equation in V . This is the
version of Duhamel’s principle that applies to this situation.

For example, let V be the upper half plane. By the method of images ((8)
above with the coordinates turned around), the Green function is

G(x,y) = − 1

4π
ln[(x1 − y1)

2 + (x2 − y2)
2] +

1

4π
ln[(x1 − y1)

2 + (x2 + y2)
2].

(Here y = (y1, y2), etc., and the image charge is at (y1,−y2).) To get g(y,x) ≡
−n̂ · ∇(x)G(x.y) we need to differentiate with respect to −x2 (since the outward
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direction is down) and evaluate it at x2 = 0 (the boundary S). This gives

− 1

2π
[(x1−y1)2+y2

2]−1(−y2)+
1

2π
[(x1−y1)2+y2

2]−1(+y2) =
y2

π
[(x1−y1)2+y2

2]−1.

Reverting to our usual notation (x1 → z, y2 → y, y1 → z) we get

g(x, z; y) =
1

π

y

(x− z)2 + y2
,

our old Green function for this problem!
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