
Moving into Higher Dimensions: The Rectangle

We will now work out a big example problem. It will break up into many
small examples, which will demonstrate many of the principles we’ve talked about
— often in a slightly new context.

Problem statement

We will consider heat conduction in a two-dimensional region, a rectangle.
The ranges of the variables, therefore, will be

0 < x < a, 0 < y < b, t > 0.

Without loss of generality, we can assume that the variables have been scaled so
that a = π.
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The heat equation is

PDE:
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

Let us assume that the boundary conditions are

BC1:
∂u

∂x
(t, 0, y) = 0 =

∂u

∂x
(t, π, y) ,

BC2: u(t, x, 0) = p(x), u(t, x, b) = q(x).

That is, the plate is insulated on the sides, and the temperature on the top and
bottom edges is known and given by the functions p and q. Finally, there will be
some initial temperature distribution

IC: u(0, x, y) = f(x, y).
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Steady-state solution

From our experience with the one-dimensional problem, we know that we
must eliminate the nonhomogeneous boundary condition (BC2) before we can
solve the initial-value problem by separation of variables! Fortunately, p and q are
independent of t, so we can do this by the same technique used in one dimension:
hunt for a time-independent solution of (PDE) and (BC), v(t, x, y) = V (x, y),
then consider the initial-value problem with homogeneous boundary conditions
satisfied by u− v.

So, we first want to solve

PDE:
∂2V

∂x2
+

∂2V

∂y2
= 0,

BC1:
∂V

∂x
(0, y) = 0 =

∂V

∂x
(π, y) ,
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BC2: V (x, 0) = p(x), V (x, b) = q(x).

This is still a partial differential equation (namely, the two-dimensional Laplace
equation). Furthermore, it still contains two nonhomogeneous conditions. There-
fore, we split the problem again:

V = V1 + V2 ,

V1(x, 0) = p(x),

V1(x, b) = 0,

V2(x, 0) = 0,

V2(x, b) = q(x).

Each Vj is supposed to satisfy Laplace’s equation and (BC1).

Remark: This splitting is slightly different from the one involving the steady-
state solution. In each subproblem here we have replaced every nonhomogeneous
condition except one by its corresponding homogeneous condition. In contrast, for
the steady-state solution we simply discarded the inconvenient nonhomogeneous
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condition, and later will modify the corresponding nonhomogeneous condition
in the other subproblem to account for the failure of the steady-state solution
to vanish on that boundary. Which of these techniques is best varies with the
problem, but the basic principle is the same: Work with only one nonhomogeneous
condition at a time, so that you can exploit the superposition principle correctly.

Let us solve for V2 by separation of variables:

V2sep(x, y) = X(x)Y (y).

0 = X ′′Y +XY ′′ ⇒ −
X ′′

X
= λ =

Y ′′

Y
.

The boundary condition (BC1) implies that

X ′(0) = 0 = X ′(π).

Therefore, up to a constant,

X(x) = cosnx, λ = n2.
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Now Y must be a solution of Y ′′ = n2Y that vanishes at y = 0; that is, up to a
constant,

Y (y) = sinhny if n 6= 0.

The case 0 must be treated separately: Y (y) = y. We have now taken care of three
of the four boundaries. The remaining boundary condition is nonhomogeneous,
and thus we cannot apply it to the individual separated solutions XY ; first we
must adding up the separated solutions with arbitrary coefficients:

V2(x, y) = a0y +
∞
∑

n=1

an cosnx sinhny.

Now we must have

q(x) = a0b+
∞
∑

n=0

an cosnx sinhnb.
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This is a Fourier cosine series, so we solve for the coefficients by the usual formula:

an sinhnb =
2

π

∫ π

0

cosnx q(x) dx (n > 0).

Divide by sinh nb to get a formula for an . For n = 0 the Fourier formula lacks
the factor 2, and we end up with

a0 =
1

πb

∫ π

0

q(x) dx.

This completes the solution for V2 .

Solving for V1 is exactly the same except that we need Y (b) = 0 instead of
Y (0) = 0. The appropriate solution of Y ′′ = n2Y can be written as a linear
combination of sinhny and coshny, or of eny and e−ny, but it is neater to write
it as

Y (y) = sinh
(

n(y − b)
)

,
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which manifestly satisfies the initial condition at b as well as the ODE. (Recall
that hyperbolic functions satisfy trig-like identities, in this case

sinh
(

n(y − b)
)

= coshnb sinhny − sinhnb coshny

= 1
2
e−nb eny − 1

2
enb e−ny,

so the three forms are consistent.) Again the case n = 0 is special: Y (y) = y− b.
We now have

V1(x, y) = A0(y − b) +
∞
∑

n=1

An cosnx sinhn(y − b).

At y = 0 this becomes

p(x) = −A0b−
∞
∑

n=1

An cosnx sinhnb.
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Thus

An = −
2

π sinh nb

∫ π

0

cosnx p(x) dx (n > 0),

A0 = −
1

πb

∫ π

0

p(x) dx.

This completes the solution for V1 and hence for v(t, x, y).

Remark: Since the boundary conditions at y = 0 and y = b refer to the
same variable, it was not really necessary to treat them separately. We could
have separated variables in the problem [(Laplace PDE) + (BC1)] satisfied by
the function V , getting

Vsep(x, y) = cosnxY (y), Y ′′ = n2Y.

Then we could find the general solution of this last equation,

Y (y) = an sinhny + bn coshny
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— or, better,
Y (y) = an sinhny + An sinhn(y − b);

write the general superposition as a sum of these over n; and then use the two
nonhomogeneous boundary conditions (BC2) to determine the constants an and
An in the summation.

This works because the nonhomogeneous conditions refer to parallel parts
of the boundary. It definitely will not work for perpendicular edges! When in
doubt, follow the injunction to deal with just one nonhomogeneity at a time.

Homogeneous problem

Next we’re supposed to solve for w ≡ u− v, which must satisfy

PDE:
∂w

∂t
=

∂2w

∂x2
+

∂2w

∂y2
,

10



BC1:
∂w

∂x
(t, 0, y) = 0 =

∂w

∂x
(t, π, y) ,

BC2: w(t, x, 0) = 0, w(t, x, b) = 0,

IC: w(0, x, y) = f(x, y)− V (x, y) ≡ g(x, y).

Since there is only one nonhomogeneous condition, we can separate variables
immediately:

wsep(t, x, y) = T (t)X(x)Y (y).

T ′XY = TX ′′Y + TXY ′′.

T ′

T
=

X ′′

X
+

Y ′′

Y
= −λ.
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(We know that λ is a constant, because the left side of the equation depends only
on t and the right side does not depend on t at all. By analogy with the one-
dimensional case we can predict that λ will be positive.) Since X ′′/X depends
only on x and Y ′′/Y depends only on y, we can introduce another separation
constant:

X ′′

X
= −µ,

Y ′′

Y
= −λ+ µ.

The boundary conditions translate to

X ′(0) = 0 = X ′(π), Y (0) = 0 = Y (b).

Thus for X we have the familiar solution

X(x) = cosmx, µ = m2.

Similarly, we must have

Y (y) = sin
nπy

b
, −λ+ µ = −

n2π2

b2
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⇒ λ = m2 +
n2π2

b2
≡ λmn .

Then
T (t) = e−λt.

(As usual in separation of variables, we have left out all the arbitrary constants
multiplying these solutions. They will all be absorbed into the coefficients in the
final Fourier series.)

We are now ready to superpose solutions and match the initial data. The
most general solution of the homogeneous problem is a double infinite series,

w(t, x, y) =
∞
∑

m=0

∞
∑

n=1

cmn cosmx sin
nπy

b
e−λmnt.

The initial condition is

g(x, y) =
∞
∑

m=0

∞
∑

n=1

cmn cosmx sin
nπy

b
. (∗)
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To solve for cmn we have to apply Fourier formulas twice:

∞
∑

m=0

cmn cosmx =
2

b

∫ b

0

sin
nπy

b
g(x, y) dy;

cmn =
2

π

2

b

∫ π

0

dx

∫ b

0

dy cosmx sin
nπy

b
g(x, y) (m > 0),

c0n =
2

πb

∫ π

0

dx

∫ b

0

dy sin
nπy

b
g(x, y).

This completes the solution for w. Now we have the full solution to the
original problem:

u(t, x, y) = w(t, x, y) + V (x, y).
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Furthermore, along the way we have constructed a very interesting family of
functions defined on the rectangle:

φmn(x, y) ≡ cosmx sin
nπy

b
.

A few early members of the family look like this:

+ + −
−

+

+

−

sin πy

b
cosx sin πy

b cosx sin 2πy
b

(Recall that cos (0x) = 1.) The function is positive or negative in each region
according to the sign shown. The function is zero on the solid lines and its
normal derivative is zero along the dashed boundaries. The functions have these
key properties for our purpose:
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• They are eigenvectors of the Laplacian operator:
(

∂2

∂x2
+

∂2

∂y2

)

φmn = −λmnφmn .

• Completeness: Any function (reasonably well-behaved) can be expanded as
an infinite linear combination of them (the double Fourier series (∗)).

• Orthogonality: Each expansion coefficient cmn can be calculated by a rel-
atively simple integral formula, involving the corresponding eigenfunction
φmn only.

These functions form an orthogonal basis for the vector space of functions whose
domain is the rectangle (more precisely, for the space L2 of square-integrable
functions on the rectangle), precisely analogous to the orthogonal basis of eigen-
vectors for a symmetric matrix that students learn to construct in linear-algebra
or ODE courses.
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Remark: A complete treatment of convergence issues for the double Fourier
series is not feasible here. We can say that if g(x, y) is very smooth, then the
coefficients go to 0 fast as m or n → ∞, and everything is OK. (More precisely,
what needs to be smooth is the extension of g which is even and periodic in x and
odd periodic in y. This places additional conditions on the behavior of g at the
boundaries.) Also, if g is merely square-integrable, then the series converges in
the mean, but not necessarily pointwise. (In that case the series for g can be used
for certain theoretical purposes — e.g., inside the integrand of certain integrals —
but an attempt to add it up on a computer is likely to lead to disaster.) However,
when t > 0 the series for w will converge nicely, even if g is rough, because the
exponential factors make the terms decrease rapidly with m and n. This is a
special feature of the heat equation: Because it describes a diffusive process, it
drastically smooths out whatever initial data is fed into it.
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The consistency condition in the Neumann problem

Go back now to the steady-state problem and suppose that the boundary
conditions on all four sides of the rectangle are of the normal-derivative type:

PDE:
∂2V

∂x2
+

∂2V

∂y2
= 0,

BC1:
∂V

∂x
(0, y) = f(y),

∂V

∂x
(π, y) = g(y),

BC2:
∂V

∂y
(x, 0) = p(x),

∂V

∂y
(x, b) = q(x).
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Apply the two-dimensional version of Gauss’s theorem:

0 =

∫ π

0

dx

∫ b

0

dy∇2V

=

∫

C

n̂ · ∇V ds

= −

∫ π

0

f(y) dy +

∫ π

0

g(y) dy −

∫ b

0

p(x) dx +

∫ b

0

q(x) dx.

Without even attempting to solve the problem, we can see that there is no solution
unless the net integral of the (outward) normal derivative data around the entire
perimeter of the region is exactly equal to zero.

This fact is easy to understand physically if we recall that this problem
arose from a time-dependent problem of heat conduction, and that a Neumann
boundary condition is a statement about heat flow out of the region concerned.
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If there is a net heat flow out of the region (and no heat source in the interior),
then the rectangular object ought to be cooling off! It is not surprising that no
steady-state solution can exist.

This existence problem is accompanied by a phenomenon of nonuniqueness,
as often happens with linear equations. (Remember what happens to N equations
in N unknowns when the determinant of the coefficient matrix is 0.) Suppose
that the net heat flux is zero, and that we have found a solution, V , of the steady-
state problem. Add a constant: V∗(x) ≡ V (x) + C. Since the constant function
has zero Laplacian and zero normal derivatives all around, V∗ is also a solution,
no matter what C is. In the context of the original time-dependent heat problem,
this ambiguity in the definition of the steady-state solution is merely a harmless
nuisance: Just subtract C from the initial data (g(x, y)) of the complementary
problem with homogeneous boundary data, and the final solution will come out
the same (unique).
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Two tricks for rectangles

The common lesson of these two examples is, “Just because you can ex-
pand an unknown solution in a Fourier series doesn’t mean that you should.”
Sometimes a simply polynomial will do a better job.

Retaining consistency in the Neumann problem

Consider Laplace’s equation in a rectangle with Neumann boundary con-
ditions as above, and assume that the normal derivatives integrate to 0, so a
solution should exist. Let’s reform the notation to make it more systematic:

∂2u

∂x2
+

∂2u

∂y2
= 0,
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−
∂u

∂y
(x, 0) = f1(x),

∂u

∂y
(x, L) = f2(x),

−
∂u

∂x
(0, y) = g1(y),

∂u

∂x
(K, y) = g2(y),

with
∫ K

0

[f1(x) + f2(x)] dx+

∫ L

0

[g1(y) + g2(y)] dy = 0.

= +

x

y

K

L

↓

↑

← →

f1

f2

g1 g2

↓

↑

← →

0

0

g1 g2

↓

↑

← →

f1

f2

0 0
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Following the usual strategy, let’s break up the problem into two, so that
we have nonhomogeneous data in only one variable at a time. (The diagram
indicates the resulting boundary equations.) But we have outfoxed ourselves.*

There is no reason why
∫K

0
[f1(x)+f2(x)] dx and

∫ L

0
[g1(y)+g2(y)] dy should equal

0 individually, so in general the two subproblems will not have solutions. What
to do?

Here is a “magic rescue”. The function V (x, y) ≡ x2 − y2 satisfies ∇2V = 0
and

∂V

∂x
= 2x =

{

0 when x = 0,

2K when x = K,

∂V

∂y
= −2y =

{

0 when y = 0,

−2L when y = L.

Let

C = −
1

2KL

∫ K

0

[f1(x) + f2(x)] dx = +
1

2KL

∫ L

0

[g1(y) + g2(y)] dy.

* Pointed out by Juan Carcuz-Jerez, a student in Fall 2000 class.
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We would like to have a solution, u(x, y), of the original problem with data
f1, f2, g1, g2 . Suppose for a moment that such a solution exists, and consider
w ≡ u − CV . We see that ∇2w = 0 and that w satisfies Neumann boundary
conditions shown in the next diagram, along with the obvious decomposition:

= +

x

y

K

L

↓

↑

← →

f1

f2 + 2CL

g1
g2−
2CK

↓

↑

← →

0

0

g1
g2−
2CK

↓

↑

← →

f1

f2 + 2CL

0 0

We calculate

24



∫ L

0

[g1(y) + g2(y)− 2CK] dy = 2CKL− 2CKL = 0,

∫ K

0

[f1(x) + f2(x) + 2CK] dx = −2CKL+ 2CKL = 0.

Therefore, each of these subproblems does have a solution, which can be con-
structed as a Fourier cosine series in the usual way. (As usual in pure Neumann
problems, the solutions are nonunique because an arbitrary constant could be
added. Apart from that, the n = 0 term in each cosine series is a function that is
independent of the Fourier variable and linear in the other variable. (Try it and
see!))

We can now define u = w + CV and observe that it solves the original
Laplacian problem. (Hence it could serve as the steady-state solution for a related
heat or wave problem.)
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Avoiding poor convergence at corners

Consider a Dirichlet problem for Laplace’s equation with two nonhomoge-
neous conditions:

= +

⋆

x

y

K

L

0

g

f 0

0

0

f 0

0

g

0 0

The two subproblems are solved by Fourier sine series in the usual way. Unless
f(0) = 0 = f(L) and g(0) = 0 = g(K), the solutions will demonstrate nonuniform
convergence (and the Gibbs phenomenon). Suppose, however, that f and g are
continuous (and piecewise smooth) and

f(0) = 0, g(K) = 0, f(L) = g(0) 6= 0.
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Then the boundary data function is continuous all around the boundary, and
one suspects that the optimal Fourier solution should be better behaved. The
standard decomposition has introduced an artificial discontinuity at the corner
marked “⋆” and thus a spurious difficulty of poor convergence.

The cure for this (admittedly relatively mild) disease is to consider

V (x, y) ≡ −g(0)
y

L

x−K

K
.

We see that ∇2V = 0 and

V (⋆) ≡ V (0, L) = g(0), V (0, 0) = V (K, 0) = V (K,L) = 0.

Therefore, w ≡ u−V satisfies ∇2w = 0 with Dirichlet boundary data that vanish
at all four corners. The problem for w can be decomposed into two subproblems
in the usual way, and both of those will have uniformly convergent Fourier sine
series.
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More generally, any function of the form

V (x, y) = A+Bx+ Cy +Dxy

is a solution of Laplace’s equation. Given any continuous boundary data around
a rectangle, the constants A,B,C.D can be chosen so that V matches the data
exactly at all four corners. Then W ≡ u− V has continuous data that vanish at
all four corners. By prudently subtracting off V before separating variables we
get a better behaved Fourier solution. Of course, the double Fourier sine series
for V (x, y) itself would exhibit nonuniform convergence, but there is no need here
to decompose the simple polynomial function V in that way.)
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