
Math. 412 (Fulling) 23 October 2015

Test B – Solutions

Calculators may be used for simple arithmetic operations only!

When a question appears in two versions, answer the version appropriate to your
status (honors or regular). Then work on the other version if you have time.

1. (30 pts.) Use Fourier transforms (or an equivalent separation of variables) to solve

(regular)

∂u

∂t
=

∂2u

∂x2
(0 < x < ∞, 0 < t < ∞),

u(x, 0) = f(x) (0 < x < ∞),

u(0, t) = 0 (0 < t < ∞).

Here I will take the transform approach. To minimize writing constants, I define the Fourier sine
transform by

F (k) =

∫

∞

0

f(x) sin kx dx , f(x) =
2

π

∫

∞

0

F (k) sin kx dk ,

with the corresponding formulas for U(k, t) . Then the transforms of the equations are

∂U

∂t
= −k

2
U , U(k, 0) = F (k) .

Therefore,

U(k, t) = F (k)e−k2t
.

Hence

u(x, t) =
2

π

∫

∞

0

U(k, t) sin kx dk

=
2

π

∫

∞

0

F (k) sin kx e−k2t
dk ,

where F (k) is given by a formula above.



412B-F15 Page 2

(honors)

∂2u

∂t2
=

∂2u

∂x2
(−∞ < x < ∞, −∞ < t < ∞),

u(x, 0) = f(x) ,
∂u

∂t
(x, 0) = g(x) (−∞ < x < ∞).

Here I will take the variable-separation approach. (Either problem can be done either way.) Write
usep(x, t) = X(x)T (t) and conclude

T ′

T
=

X ′′

X
= −k

2
.

(We know from experience that imaginary k will not appear, and k = 0 only as the lower limit of

the integral.) Thus Xk(x) = eikx , where k can be either positive or negative for a given k2 , and

Tk(t) = C(k) cos kt+D(k) sin kt .

Therefore, the full solution has the form

u(x, t) =
1

2π

∫

∞

−∞

e
ikx[C(k) cos kt+D(k) sin kt] dk .

The initial conditions become

f(x) =
1

2π

∫

∞

−∞

e
ikx

C(k) dk ,

g(x) =
1

2π

∫

∞

−∞

e
ikx

kD(k)dk .

Therefore,

C(k) =

∫

∞

−∞

e
−ikx

f(x) dx ,

D(k) =
1

k

∫

∞

−∞

e
−ikx

g(x) dx .

Remark: It is equally valid to write

Xk(x) = A cos kx+B sin kx ,

where now 0 < k < ∞ . However, it is important to remember that the full solution must be a linear
combination of normal modes. Therefore, it is wrong to write

u(x, t) =

∫

∞

0

(A cos kx+ B sin kx)(C cos kt+D sin kt) dk .

Not every solution factors in that way, and for those that do, the solution for A , B , C , D will
not be unique. The correct form is

u(x, t) =

∫

∞

0

[a(k) cos kx cos kt+ b(k) cos kx sin kt+ c(k) sin kx cos kt+ d(k) sin kx sin kt]

(possibly with a different normalization convention, of course.)
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2. (30 pts.) Construct the Green function that solves

y′′ − 4y = f(x) (0 < x < 1),

y(0) = 0 = y(1) .

Clearly state the formula for calculating y from G and f .
Hint: sinh a cosh b− cosh a sinh b = sinh(a− b) .

This is the same as Qu. 5 of Fall 2012 with a different number. The formula will be

y(x) =

∫ 1

0

G(x, z)f(z)dz .

The Green function must satisfy

∂2G

∂x2
− 4G = δ(x− z) , G(0, z) = 0 = G(1, z) .

The differential equation is interpreted as

∂2G

∂x2
− 4G = 0 for x < z and x > z .

G(z+, z) = G(z−, z) ,
∂G

∂x
(z+, z)−

∂G

∂x
(z−, z) = 1 .

Therefore, in view of the boundary conditions,

G(x, z) =

{

A(z) sinh(2x) for 0 < x < z,

B(z) sinh(2(x− 1)) for z < x < 1.

The jump conditions give

A(z) sinh(2z) = B(z) sinh(2(z − 1)) , 2A(z) cosh(2z)− 2B(z) cosh(2(z − 1)) = −1 .

After some algebra using the hint, you get

A(z) =
sinh(2(z − 1))

2 sinh 2
, B(z) =

sinh(2z)

2 sinh 2
.
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3. (Essay – 40 pts.) Outline a strategy to solve

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
(0 < x < π , 0 < y < 2 , 0 < t < ∞) ,

u(x, 0, t) = 0 , u(x, 2, t) = g(x) ,

u(0, y, t) = T = u(π, y, t) (T = nonzero constant) ,

u(x, y, 0) = f(x, y) .

Then carry out as many of the steps as you have time for.

This is the same as Qu. 3 of Fall 2006 with a few changes.
Because there are three different kinds of nonhomogeneous data, we expect to have to break the

solution into three terms. Because the boundary data are independent of t , we expect that two of
those terms can be steady-state solutions, independent of t . Suppose that we have found a steady-
state solution, v(x, y) , that satisfies all the spatial boundary conditions. (Later we will break v into
two parts.) Then w = u − v satisfies the heat equation with completely homogeneous boundary
conditions and the initial condition w(x, y, 0) = f(x, y)− v(x, y) . The problem for w can be solved
by separation of variables, and the eigenfunctions will be products of sine functions in the x and y
directions.

Now consider the problem of finding v . It will satisfy Laplace’s equation. Since T does not
depend on y , the best strategy is to look for a solution of Laplace’s equation that does not depend
on y and satisfies the T boundary conditions. It is fairly easy to see that the constant function T
will work, so I won’t bother to give that function another name. Let s(x, y) = v(x, y)− T . Then s
must satisfy Laplace, vanish on the sides x = 0, π , and satisfy

s(x, 0) = −T , s(x, 2) = g(x)− T .

This can be solved by a routine separation of variables. (There will be two kinds of terms correspond-
ing to the two nonhomogeneous boundary data functions, but since both those conditions refer to
the same variable (i.e., parallel sides) it is not necessary to split s into two parts before separating
variables.)

Finally, the solution is u = w(x, y, t) + s(x, y) + T . [An alternative, but suboptimal, solution is
to write v = v1 + v2 with g as boundary data for v1 and T as boundary data as v2 (and no
other nonhomogeneous data). In that approach one will need to expand the constant function T as
a sine series in x . (But we’ll end up doing that anyway, it turns out.)]

Sketch of details of w : It satisfies

∂w

∂t
=

∂2w

∂x2
+

∂2w

∂y2
,

w(x, 0, t) = 0 = w(x, 2, t) , w(0, y, t) = 0 = w(π, y, t) ,

w(x, y, 0) = f(x, y)− v(x, y) ≡ h(x, y) .

Find eigenfunctions Xn(x)Ym(y) = sin(nx) sin
(

mπy
2

)

. Then

w(x, y, t) =

∞
∑

n=1

∞
∑

m=1

anm sin(nx) sin
(

mπy

2

)

e
−(n2+m2π2/4)t
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and

anm =
2

π

∫ 2

0

∫ π

0

sin(nx) sin
(

mπy

2

)

h(x, y) dx dy .

Sketch of details of T : We need a function of x alone that satisfies Laplace’s equation (i.e., has
zero second derivative) and equals T at two points. It is of the form Ax+B , and you quickly find
A = 0 , B = T .

Sketch of details of s : It satisfies

∂2s

∂x2
+

∂2s

∂y2
= 0 ,

s(x, 0) = −T , s(x, 2) = g(x)− T ≡ k(x) ,

s(0, y) = 0 = s(π, y) .

Separation of variables leads to eigenfunctions Xn(x) = sin(nx) and complementary solutions
Y (y) = sinh(ny) and sinh[n(2 − y)] (each chosen to vanish on one of the relevant boundaries).
Summing up,

s(x, y) =

∞
∑

n=1

sin(nx)
[

an sinh(ny) + bn sinh[n(π − y)]
]

.

Then we find an from the Fourier sine coefficients of k and bn from those of −T (divided by
sinh(2n) ).


