
Math. 460 (Fulling) 12 October 2011

Test A – Solutions

1. (30 pts.) Start with a (“contravariant”) vector space V .

(a) Define a
(0
3

)

tensor in the modern fashion (as a “multilinear functional . . . ”).

A
(

0

3

)

tensor is a multilinear functional of three vector arguments. That is, if ~u , ~v , and ~w are

vectors in V , then T (~u,~v, ~w) is a (real) number, and

T (λ~u1 + ~u2,~v, ~w) = λT (~u1,~v, ~w) + T (~u2,~v, ~w)

for all numbers λ and all vectors, with analogous linearity conditions for the other two argument
slots.

(b) Given that under a change of basis the coordinates of a vector in V transform according
to

vα = Λα
β vβ ,

derive the transformation law for the components, {Tαβγ} , of a
(0
3

)

tensor. (Start

by explaining what “components” are in the context of your definition in (a).)

The tensor components in a particular basis can be defined as the numbers

Tαβγ = T (~eα,~eβ ,~eγ)

obtained by applying the multilinear functional to all possible choices of the vectors from the basis.
Equivalently, {Tαβγ} are the numbers such that the value of the functional on arbitrary vectors is
given by the formula

T (~u,~v, ~w) = Tαβγu
α
v
β
w
γ

(with the summation convention understood).
Working from the second of these definitions, we can require

T (~u,~v, ~w) = T
αβγ

u
α
v
β
w
γ

= T
αβγ

Λα
αΛ

β
βΛ

γ
γ u

α
v
β
w
γ
,

from which we read off

Tαβγ = T
αβγ

Λα
αΛ

β
βΛ

γ
γ .

To use the first definition instead, note that the basis change equivalent to the given vector transfor-
mation law is

~eβ = Λα
β ~eα .

Therefore,

T (~eα,~eβ ,~eγ) = Λα
αΛ

β
βΛ

γ
γ T (~eα,~eβ ,~eγ) ,

the same result as before. Of course, to get the transformation from unbarred to barred indices, use
the inverse matrix for Λ .
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2. (45 pts.) Let t and x be the usual coordinates in 2-dimensional Minkowski space-time,
and define new coordinates u and v by

t = u cosh v , x = u sinh v .

(a) If 0 < u < ∞ and −∞ < v < ∞ , what region of space-time is actually covered by
this coordinate chart?

Since u is always positive, so is t . But x takes either sign. Also, we always have t > |x| . In fact,
the points reached are precisely those with t > |x| , since for such points u and v can always be
found.

(b) Find the tangent vectors to the coordinate curves, ~eu and ~ev .

Take derivatives of x and t with respect to u and v :

~eu =

(

cosh v

sinh v

)

, ~ev =

(

u sinh v

u cosh v

)

.

(c) Find the metric tensor, {gαβ} , (or, equivalently, the line element, ds2 ) in the new
coordinates.

Method 1: Find the matrix of (Lorentz) dot products of the vectors found in (b):

(

guu guv

gvu gvv

)

=

(

− cosh2 v + sinh2 v −u sinh v cosh v + u sinh v cosh v

−u sinh v cosh v + u sinh v cosh v −u2 sinh2 v + u2 cosh2 v

)

=

(

−1 0

0 u2

)

.

Method 2: ds2 = −dt2 + dx2 =

−(cosh v du+ u sinh v dv)2 + (sinh v du+ u cosh v dv)2 = −du2 + u
2
dv

2 + 0 du dv.

(d) Find the Christoffel symbols ( Γuuv , etc.).

Method 1: Use
∂~eβ

∂xγ
= Γα

βγ ~eα .

∂~eu

∂u
= 0 , so Γu

uu = 0 = Γv
uu .

∂~eu

∂v
=

1

u
~ev , so Γu

uv = 0 and Γv
uv =

1

u
.

∂~ev

∂u
=

1

u
~ev yields no additional information.

∂~ev

∂v
= u~eu , so Γu

vv = u and Γv
vv = 0 .

Method 2: Use Γαβγ = 1
2g

αµ(gµβ,γ + gµγ,β − gβγ,µ) . The results should be the same.
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3. (25 pts.) Consider the collision of a photon and an electron (mass m ). In the center-of-
mass frame (and taking h̄ = 1 , c = 1 ) the photon moves in the negative x direction
with energy ω , and the electron moves in the positive x direction with momentum p .
Suppose that after the collision the photon is moving exactly in the negative y direction.

(a) What are the 4-momentum vectors of the outgoing photon and electron in the center-
of-mass frame?

•
(

E

p

)

→ ←
(

ω

−ω

)

Before collision: By definition of center-of-mass frame, p = ω ; E =
√
ω2 +m2 . Momentum

components in the y and z directions are 0 and are not labeled on the diagram.
After collision: By conservation of energy and momentum, the outgoing energies are the same as

the incoming ones and the outgoing momenta are the same as the incoming ones except for being in
the y direction instead of x direction. (I will prove this claim below and give you 5 points for doing
likewise.) Thus the outgoing 4-momenta are

~Pγ =







ω

0

−ω
0






, ~Pe =







E

0

ω

0






.

Proof: The electron momentum must be equal and opposite to the photon momentum, so the
electron must also be moving along the y axis. Thus the momenta have the form

~Pγ =







ω′

0

−ω′

0






, ~Pe =







E′

0

ω′

0






, E

′ =
√

ω′2 +m2.

Conservation of energy says E′ + ω′ = E + ω , and since E + ω is a monotonic function of ω , this
equality can hold only when ω′ = ω .

(b) What is the energy of the outgoing photon in the original rest frame of the (incoming)
electron? (Write answer in terms of ω .)

Method 1: The 4-velocity of the electron is the temporal unit vector in its rest frame. In the CM
frame this vector is

~P

m
=

1

m







E

ω

0

0






.
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Take its Lorentz dot product with ~Pγ :

−ω E

m
= − ω

m

√

ω2 +m2 .

The outgoing photon energy in the incoming electron rest frame is the negative of this.
Method 2: The Lorentz transformation from the CM frame to the rest frame is







γ −vγ 0 0

−vγ γ 0 0

0 0 1 0

0 0 0 1






,

where

v =
p

E
=

ω√
ω2 +m2

and γ =
1√

1− v2
=

E

m
=

√
ω2 +m2

m
.

Apply this to the photon momentum, getting







γω

−vγω
−ω
0






.

The energy component is

γω =
ω

m

√

ω2 +m2 .


