
Chapter 8

Some Geometrical Apparatus

Up to now our treatment of differential geometry has been rather

informal. The reader is assumed to have the modicum of background

knowledge of manifolds and tensors needed to follow the discussion at

the modest level of rigor appropriate to the occasion. In the study

of renormalization in the next chapter, however, covariant derivatives

and curvature tensors will enter in an essential and technical way. It

seems prudent, therefore, to pause for a comparatively thorough and

precise discussion of those concepts, which are central to contemporary

physics — not only in general relativity, but also in the gauge theories

of elementary particles.

We are concerned here only with purely “local” matters. Global

topology, which leads in physics to monopoles, the Aharonov–Bohm

effect, instantons, and so on, has been the subject of a vast amount of

recent expository writing and is beyond the scope of this book.

Covariant derivatives

Let’s start with a conceptual introduction to, or review of, the two

most familiar and elementary instances of covariant differentiation in

physics. They correspond to the fundamental coupling of matter to the

electromagnetic and gravitational fields, respectively.

In nonrelativistic quantum mechanics the basic dynamical object

is the wave function, ψ(x) = ψ(t,x). Insofar as the operational signif-

icance of ψ lies in the probability density, |ψ(x)|2, the phase of ψ is

irrelevant. At least, the overall phase is. At first sight it might appear

that even the relative phase of the wave function at different points is

unobservable:

ψ̃(x) ≡ eiθ(x) ψ(x) ≡ [Uψ](x)

contains the same information as ψ. This is not quite correct, however,

as soon as one considers the momentum observable (or anything else
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which does not commute with position). A component of the momen-

tum operator is

pj = −i∂j ≡ −i
∂

∂xj
(j = 1, . . . , d),

so its expectation value in the state ψ is

〈pj〉 = −i

∫

ψ*∂jψ d
dx.

But

−i∂jψ = e−iθ[−i∂jψ̃ − (∂jθ)ψ̃],

and because of the extra term,

∫

ψ*∂jψ d
dx 6=

∫

ψ̃*∂jψ̃ d
dx.

Thus ψ and ψ̃ are not physically equivalent. A Schrödinger equation

of the elementary form is not invariant under U :

i∂0ψ = −
1

2m

d
∑

j=1

∂j
2ψ + V (x)ψ

transforms to

i∂0ψ̃ = −
1

2m

d
∑

j=1

[∂j − i(∂jθ)]
2
ψ̃ + [V + (∂0θ)] ψ̃.

Suppose, however, that each differentiation operator in the Schröd-

inger equation was already accompanied by a function:

i∂0ψ = −
1

2m

d
∑

j=1

[∂j + iAj(x)]2ψ + V (x)ψ. (8.1)

Then the equation satisfied by ψ̃ will be of the same form (8.1), but

with different functions A and V , because

U [∂µ + iAµ]U−1 = ∂µ + i(Aµ − ∂µθ) ≡ ∂µ + iÃµ .

(If we allow θ to depend on t, then A and V must also.) Of course,

A really does exist; it is the electromagnetic vector potential. In this
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way, a theoretical physicist who had never heard of magnetism might

be led to predict its existence, on the basis of the purely aesthetic

requirement that quantum mechanics be invariant under the local phase

transformations, U = U{θ(x)}.

This observation makes possible the following new point of view.

Refusing to commit ourselves to any local phase convention, we re-

gard the wave function in an abstract way: ψ maps each point x onto

some point in a certain space — call it Fx — about which we can say

only that it has the same linear and metric structure as the complex

plane. We specifically deny that this space can be identified with C in a

fixed way; any such identification would be tantamount to an arbitrary

phase convention. On these abstract wave functions there is defined an

operation of covariant differentiation,

ψ 7→ ∇µψ.

Given any particular local phase convention, this operation is express-

ible by a concrete formula among complex-valued functions:

∇µψ(x) = [∂µ + iAµ(x)]ψ(x). (8.2)

If the phase convention is changed, ψ̃ ≡ eiθ(x)ψ, then the connection

coefficients, Aµ, change according to

Ãµ = Aµ − ∂µθ. (8.3)

A particular local phase convention is called “a gauge” (or “a choice

of gauge”). The expectation value

〈pj − Aj〉 =

∫

ψ*(−i∇jψ) ddx

is gauge-invariant. (In the Lagrangian formalism of particle mechanics,

p − A equals mv, which is indeed the quantity with direct physical

significance.) Similarly, the gauge-covariant Schrödinger equation is

i∇0ψ = −
1

2m

d
∑

j=1

∇j
2ψ, (8.4)

which is (8.1). The Klein–Gordon and Dirac equations can be treated in

the same way. (“Covariant” means that the form remains unchanged,

while the particular coefficients change according to (8.3).)
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Notational remarks:

(1) Our sign conventions are those of Messiah 1961, Chap. 20. In

particular, A0 = +V and the components of A are Aj = −Aj .

The quantum correspondence rule is pµ 7→ +i∂µ for µ = 0, 1, . . . , d.

Because of our metric-signature convention, the components of

both spatial vectors, p and A, change sign when indices are raised

and lowered. People who use the metric signature (−+ ++) also

usually reverse the relative sign of ∂µ and iAµ in (8.2).

(2) Units are chosen so that c and h̄ equal 1. Moreover, the unit electri-

cal charge, e, is absorbed into Aµ. (It will come back eventually in

the denominator of the kinetic Lagrangian of the electromagnetic

field, e−2FµνF
µν .)

The second example is the differentiation of vector fields on a man-

ifold. Any definition of such a derivative which can be covariantly ex-

pressed in all coordinate systems and satisfies some basic formal prop-

erties (to be reviewed briefly below) leads in each particular coordinate

system to a formula of the type

∇µv
ν ≡ vν

;µ = ∂µv
ν + Γν

ρµv
ρ. (8.5)

where the connection coefficients or Christoffel symbols Γν
ρµ are func-

tions of x. When the manifold is Riemannian or pseudo-Riemannian,

there is a preferred connection whose coefficients are constructed from

first-order derivatives of the metric tensor, but our preliminary remarks

here are valid more generally.

To see the near inevitability of (8.5) and to give the Christoffel

symbols a more intrinsic meaning, suppose that a basis has been chosen

for the space of (contravariant) vectors at each point in the manifold:

{eα(x)}nα=1 . (The α labels different vectors in the basis, not the com-

ponents of a single vector e.) Suppose also that eα varies smoothly

with x, so that it makes sense to differentiate it. Each vector field

v ≡ {vµ(x)} can be written as a linear combination, v = vαeα . We

assume that covariant differentiation of the product of a scalar function

and a vector field satisfies the Leibnitz rule. Then∇v, the tensor whose

components are standardly written ∇µv
ν or vν

;µ , must be calculable

by

∇µ(vαeα) =
(

∇µ(vα)
)

eα + vα∇µeα ,

where ∇µ(vα) is the covariant derivative of the scalar function vα,

assumed to reduce to the ordinary derivative, ∂µv
α ≡ vα

,µ . Define the
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Γ’s by

∇µeα ≡ Γβ
αµeβ . (8.6)

Then our calculation shows that

∂µv = (vα
,µ + Γα

βµv
β)eα ,

which is a restatement of (8.5).

Now let’s pass from these examples to a general framework. Let M

be a manifold of dimension n. Usually for us it will be equipped with

a metric tensor, gµν(x). We want to consider derivatives of objects

φ(x), which are examples of some type of (classical) “field” on M ;

technically, they are sections of a vector bundle over M . Each φ is

a kind of function, whose value at a point x belongs to some vector

space Fx (the fiber at x). Physically, the elements of this space may

be numbers or vectors, as in the two examples, or tensors, spinors,

isovectors (of a non-Abelian gauge theory), etc. Fx is isomorphic to any

other fiber, Fy, but not canonically identified with it. Let the common

dimension of the fiber spaces be r. They may be real or complex

vector spaces, depending on application. Let F be a “fiducial” vector

space isomorphic to the fibers. (Thus F = C in our first example, RN

(N = dimension of manifold) in the second.)

........
.........
.........
.........
..........
..........
..........
...........
...........
............
.............
..............
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

•

x

•

φ(x)

Fx

M

φ

Ordinarily I use an index-free vector and matrix notation in F , but

a classical index notation for tensors over M . For the latter, we will

always be using a coordinate basis, rather than a more general “moving

frame” (see, e.g., Schutz 1985, Chap. 5).

To do calculations with φ it helps to represent φ(x) by numbers.

Therefore, we introduce a basis in each Fx , so that

φ(x) = φj
ej ≡

r
∑

j=1

φj(x)ej(x).
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Relative to the basis {ej}, each field φ is identified with a sequence

{φj(x)}rj=1 of ordinary real- or complex-valued functions. A change of

basis, or gauge transformation, is specified by an equation of the form

ẽj(x) ≡
r
∑

k=1

ek(x)[U(x)−1]kj (8.7a)

or, equivalently,

φ̃
j
(x) =

r
∑

k=1

U(x)j
kφ

k(x) ≡ (Uφ)j . (8.7b)

We assume that all “admissible” bases belong to an equivalence class

such that the matrices U j
k relating them are smooth functions.

Now to the main business at hand, defining the derivative of φ. The

literal partial derivatives ∂φj/∂x
µ do not fit together as the components

of an intrinsically meaningful object, because they do not include in-

formation on the x-dependence of the basis vectors. (In general there

are no “constant” e’s against which other things may be compared.)

Consequently, ∂µφ
j has a complicated, inhomogeneous transformation

law involving derivatives of U . As the derivative of a scalar function

is a covariant vector field, one would prefer the derivative of a section

φ to be a covector-valued section (or Fx-valued covector), ∇µφ, which

continues to behave like (8.7b) under gauge transformations (and also

like an ordinary covector field under coordinate transformations in M).

Therefore, we define a covariant differentiation to be any mapping

of ordinary sections into covector-valued sections which satisfies

∇µ(φ1 + φ2) = ∇µφ1 +∇µφ2

and

∇µ(fφ) = (∂µf)φ+ f∇µφ

(where f is any ordinary, scalar-valued function). Applying these ax-

ioms to the expansion φ = φjej, we get

∇µφ = (∂µφ
j)ej + φj∇µej

≡ (∂µφ
j)ej + φj(∇µej)

kek

= [∂µφ
j + φk(∇µek)j]ej ,
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where we had to do some index relabeling in the last step. Therefore,

if wµ(x) (which is, for each x and each µ, a matrix) is defined by

∇µ(ek) ≡ [wµ]jkej , (8.8)

there follows

(∇µφ)j(x) =
(

∂µφ
j
)

(x) + [wµ(x)]jkφ
k(x),

usually abbreviated to

∇µφ = ∂µφ+ wµφ. (8.9)

Conversely, any derivative defined by such a formula satisfies the lin-

earity and Leibnitz conditions from which we started.

Note that the covariant derivative (or the associated connection

form, wµ), is extra structure — it is not uniquely determined by the

manifold and vector bundle.

Exercise 29: What happens to w under a gauge transformation,

ẽ = eU−1, φ̃ = Uφ ?

(a) Show that

w̃µ = U [wµ − U
−1∂µU ]U−1 = UwµU

−1 − (∂µU)U−1

and hence

∇̃µ = U∇µU
−1.

(I.e., ∇̃ and ∇ represent the same geometrical operation with re-

spect to different bases.)

(b) Since we use coordinate bases, a coordinate transformation in M

determines a gauge transformation, in the present extended sense,

on the vector fields on M . Show that the application of (a) to con-

travariant vector fields yields the transformation law of Christoffel

symbols found in classical texts on differential geometry,

Γ̃
ρ

µν =
∂x̃ρ

∂xγ

∂xα

∂x̃µ

∂xβ

∂x̃ν
Γγ

αβ −
∂2x̃ρ

∂xα∂xβ

∂xα

∂x̃µ

∂xβ

∂x̃ν
.

The transformation of the index µ under the coordinate change

must also be taken into account here.
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Gauge theories in physics involve two additional elements which

are not emphasized here. First, the connection form itself becomes a

dynamical field, satisfying its own field equations (Maxwell, Einstein, or

Yang–Mills equations). This gives the theory a true gauge invariance,

not just a covariance. Second, in the gauge theories of particle physics,

not all smooth choices of local basis are admissible; or, as it is more

often expressed, the group of allowed gauge transformations at a point

is not the entire general linear group of dimension r. Rather, one

considers an equivalence class of bases related among themselves by

gauge transformations whose local values belong to a subgroup that

(typically) preserves some quadratic form. The group, such as U(1),

SU(3), SO(10), etc., is prescribed before the vector bundles supporting

it as a gauge group are constructed, and, regardless of the bundle, the

connection matrices wµ always belong to some representation of the

corresponding Lie algebra. We have already seen this situation in the

electromagnetic case, where only multiplication by functions of modu-

lus 1 (the group U(1)) was considered, and the connection cofficients

consequently were purely imaginary. Since the choice of group deter-

mines the possible multiplets of elementary particles, particle physicists

place great emphasis on the group in expounding gauge theories. For

our purposes, however, the group is of secondary importance.

Curvature

The presence of a nonvanishing electromagnetic field means that

there is no basis with respect to which Aµ = 0. Similarly, the presence

of a nontrivial gravitational field means that there is no coordinate

system in which the Christoffel symbols are identically zero. (Either of

these conditions could be enforced at a single point, but not throughout

an open region.) Both of these fields are manifestations of curvature of

vector bundles (more precisely, curvature of particular connections on

bundles).

There are a few more facts about connections that need to be

placed on record before we proceed.

First, if F* is the dual space of F , then the covariant derivative

of F*-valued fields is defined by postulating that a Leibnitz rule holds

for differentiation of the pairing of an F*-valued field with an F -valued

field (that is, a scalar function Ψ(φ) ≡ Ψjφ
j , where Ψ(x)( · ) ∈ Fx*

and φ(x) ∈ Fx). This amounts to saying that the connection matrices
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for F*-valued fields are the negatives of the transposes of those for F -

valued fields. For example, the formula for differentiation of a covector

field is

∇µvν ≡ vν;µ = ∂µvν − Γρ
νµvρ ;

in the comparison with (8.5), the transposition is on the indices (ν, ρ).

Exercise 30: Prove the assertion (“This amounts to saying . . . ”).

Second, similar reasoning establishes that the connection form for

the derivative of any kind of tensor should be the sum of the connection

forms for the various factors of the tensor-product space in question.

That is, the formula for the covariant derivative of a tensor contains,

besides the literal derivative, one term for each index of the tensor,

and the form of that term is the same as it would be if that were the

only index the tensor possessed. This refers both to contravariant and

covariant space-time indices (Greek superscripts and subscripts) and to

primordial and dual bundle indices (referring to components of vectors

in F and F*). Example:

∇µB
j
νk ≡ ∂µB

j
νk − Γρ

νµB
j
ρk + [wµ]jlB

l
νk − [wµ]lkB

j
νl .

Charged scalar fields (for which wµ = iAµ) are included in this formal-

ism, although the “index” involved has a range of only one value and

would not normally be written as such.

Exercise 31: Let M(x) be a “matrix-valued” field — i.e., its value

at each point x is a linear operator mapping Fx into itself. Show that

the covariant derivative of such an object is

M;µ = M,µ + [wµ,M ].

Everything that has been said about differentiation on bundles

applies, of course, to these tensor bundles. That is, the index j in the

formalism may (and often does) stand for a whole string of indices, some

of which are Greek and others are the bundle indices of one or more

elementary field types such as spinors, charged scalars, isovectors, etc.

(It should also be kept in mind that the elementary field type could

simply be the ordinary vector field; inclusion of a connection in the

formalism does not necessarily imply presence of a gauge field in the

narrowest physical sense.) The derivative of a tensor is a tensor with

one additional covariant space-time index.
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Knowing how to differentiate a general tensor, we are now able to

calculate higher-order derivatives of the original sections. The second

derivative is

φ;µν ≡ ∇ν∇µφ [sic!]

= (φ;µ),ν + wνφ;µ − Γα
µνφ;α

= (φ,µν + wµ,νφ+ wµφ,ν) + (wνφ,µ + wνwµφ)

− Γα
µνφ,α − Γα

µνwαφ.

(Some mathematicians consider the classical index notation particu-

larly offensive or misleading in this context; see Remark below.) We

note that this expression is not symmetric in µ and ν; covariant differ-

entiations in different directions need not commute. To be precise,

φ;νµ − φ;µν = (wν,µ − wµ,ν + [wµ, wν ])φ+ (Γα
µν − Γα

νµ)φ;α .

Since the values of φ, φ;α , and the left side of the equation at any

particular x are all tensors, and since the values of φ and φ;α could be

anything in the respective fiber spaces, the objects

Yµν(x) ≡ wν,µ − wµ,ν + [wµ, wν ] (8.10)

and

T ρ
µν(x) ≡ Γα

µν − Γα
νµ (8.11)

must be tensors themselves, being linear maps from one tensor space

into another. Y is called the curvature tensor of the bundle to which

φ belongs. Note that for each µ and ν, Yµν(x) is a linear map from

Fx into itself, hence, in component language, an r × r matrix, or a

tensor with one contravariant bundle index and one covariant bundle

index (both suppressed in our notation). T is the torsion tensor; it has

nothing specifically to do with the bundle with fiber F , but rather is

completely determined by the connection defining covariant derivatives

of vector fields on M . If the Christoffel symbols of that connection

are symmetric in their two subscripts, as is usually assumed, then the

torsion is zero. To get the curvature of this manifold connection, let the

sections φ in our general formalism be the contravariant vector fields;

then the w’s in (8.10) are the Christoffel symbols, and one has

[Yµν ]αβ = Rα
βµν ≡ Γα

βν,µ − Γα
βµ,ν + Γα

γµΓγ
βν − Γα

γνΓγ
βµ . (8.12)
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This is the Riemann curvature tensor. (See also (8.14).) The curvature

tensor for covectors is the same with a minus sign (and a transposi-

tion, implemented automatically by the rule that a subscript can be

contracted (summed over) only with a superscript). Finally, note that

in the electromagnetic case, where wµ = iAµ ,

Yµν = i(Aν,µ − Aµ,ν) ≡ iFµν

is essentially the electromagnetic field-strength tensor.

Exercise 32: Verify directly from (8.10) that Yµν transforms un-

der gauge transformations as a tensor with one covariant and one con-

travariant bundle index:

Ỹµν(x) = U(x)Yµν(x)U(x)−1.

The equation that resulted from our second-derivative calculation

can be rewritten

φ;νµ = φ;µν + Yµνφ+ T ρ
µνφ;ρ . (8.13)

This Ricci identity tells one how to unscramble repeated covariant

derivatives into any desired order. Once again, tensor fields of any

type are covered by this formula if Y φ is suitably interpreted; in gen-

eral it will be a sum of terms, some involving Riemann tensors and some

involving the Y of some elementary type of field (the gauge curvature

or gauge field strength of a physical gauge theory). For example, let

Gµ be the object M;µ of Exercise 31; then

Gµ;ρν = Gµ;νρ −R
α
µνρGα + [Yνρ, Gµ],

if there is no torsion and if Y now denotes the elementary gauge field

strength.

Remark: A tensor identity such as

∇µ∇νv
ρ = ∇ν∇µv

ρ +Rρ
σµνv

σ (8.14)

can be interpreted either as an equation between abstract tensors, or

as an equation between the concrete components of the tensors with
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respect to some basis. In the latter case, the correct interpretation of

the left-hand side, for instance, is

(eµ)α(eν)β∇α∇βv

and not

(eµ)α∇α

(

(eν)β∇βv
)

.

There is thus a dangerous ambiguity in the notation if one insists on

regarding “∇µ” as an abbreviation for a directional derivative along a

particular concrete basis-vector field, since one will then be led to the

second interpretation, which differs from the first by a term involving

the derivative of eν . Many modern texts on differential geometry give

the Ricci identity in a directional-derivative form, in which an extra

term must be subtracted off to account for the derivatives of the vector

fields along which one is taking the directional derivatives. With the

notation u · ∇ for uµ∇µ, etc., that equation is (in the case of zero

torsion)

R(v,u,w) ≡ {Rα
βµνv

βuνwν}

= [u · ∇,w · ∇]v − ([u,w] · ∇)v,

where [u,w] is the vector field with components uµwα
,µ−w

µuα
,µ (which

is, incidentally, the commutator of u · ∇ and w · ∇ when acting on

scalars). For a coordinate basis, [eµ, eν ] will always be zero, and so the

form of the Ricci identity is unchanged after all; for more general basis-

vector fields, the commutator term is nontrivial. In any case, however,

the classical Ricci identity (8.14) (or (8.13)) is a valid equation when

properly understood as referring to components of tensors with respect

to an arbitrary basis at a point, not to basis-vector fields; and that is

how we shall always understand it.

The curvature and torsion tensors have certain symmetries, which

must be taken into account when attempting to simplify expressions

involving them into a unique and compact form. From the definition,

it’s obvious that

Yνµ = −Yµν (8.15a)

and hence

Rα
βνµ = −Rα

βµν . (8.15b)
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The torsion, also, is antisymmetric in its two subscripts. The Bianchi

identity is

Yαβ;γ + Yβγ;α + Yγα;β = −T ρ
αβYγρ − T

ρ
βγYαρ − T

ρ
γαYβρ ; (8.16a)

as a special case,

Rµ
ναβ;γ +Rµ

νβγ;α +Rµ
νγα;β = torsional terms. (8.16b)

There is also the so-called cyclic identity,

Rµ
αβγ +Rµ

βγα +Rµ
γαβ

= −Tµ
αβ;γ − T

µ
βγ;α − T

µ
γα;β + T ρ

αβT
µ
ργ + T ρ

βγT
µ
ρα + T ρ

γαT
µ
ρβ . (8.17)

This may be regarded as a Bianchi identity for the torsion; but it

is more familiar in the context where the torsion is zero, in which

case (8.17) with (8.15b) simply says that R is annihilated by complete

antisymmetrization on its last three indices. Many authors call (8.17)

the first Bianchi identity ; (8.16b) is then the second Bianchi identity.

Finally, the Ricci identity (8.13), applied to any of these tensors or any

covariant derivative (to any order) of one of them, belongs in the list

of symmetries.

Proof of the Bianchi identities: Covariant derivatives satisfy the

Jacobi identity

[∇µ, [∇ν,∇ρ]]φ+ [∇ν , [∇ρ,∇µ]]φ+ [∇ρ, [∇µ,∇ν]]φ = 0.

(This is a purely formal, or metamathematical, consequence of the

antisymmetry of the definition of a commutator. The commutator here

is just an abbreviation for the difference of two mixed second-order

covariant derivatives in opposite order. It is not necessary to interpret

the ∇ symbols as directional-derivative operations, so as to apply the

Jacobi identity for operators. Therefore, it is correct to carry out this

proof in the abstract index formalism.) Writing out all the derivatives

and performing a few index manipulations, one arrives at

0 =Yνρ;µφ+ Tλ
νρ;µφ;λ + Tλ

νρYµλφ+ Tσ
νρT

λ
µσu;λ −R

λ
µνρu;λ

+ cyclic permutations on the free indices.

Since φ and φ;λ are arbitrary (and independent at any one x), their

respective coefficients may be set equal to 0. The results are versions

of (8.16a) and (8.17).



172 8. Geometrical apparatus

In Riemannian geometry and gravitational theory one almost al-

ways deals only with connections which are metric-compatible:

∇ρgµν = 0. (8.18)

This condition has the happy consequence that differentiation com-

mutes with raising and lowering of indices. It also implies a large num-

ber of additional symmetries for the Riemann tensor. Differentiating

(8.18) once more and antisymmetrizing leads to the conclusion that R

is antisymmetric in its first two indices:

Rβαµν = −Rαβµν . (8.19)

(The first index here is the erstwhile superscript, lowered by the met-

ric tensor.) This, together with the cyclic identity, implies the pair

symmetry :

Rγδαβ = Rαβγδ + torsion terms. (8.20)

In addition, one usually takes the torsion to be zero. This uniquely

determines the metric-compatible connection to be

Γρ
µν = 1

2g
ρτ (gντ,µ + gµτ,ν − gµν,τ ) ; (8.21)

the resulting Riemann tensor (8.12) is a sum of terms linear in second

(literal) derivatives of g and terms quadratic in its first derivatives. I

have included the torsional terms in most of the foregoing formulas

simply to make them more useful for reference. However, it turns out

that the techniques to be described in the remainder of this chapter

also apply to theories with torsion, provided that the torsion tensor is

totally antisymmetric. By convention, the superscript of T is regarded

as the last index, so that

Tαβγ ≡ T
ρ
αβgργ .

The condition in question is then that this totally covariant tensor be

antisymmetric under all permutations of the six indices.

Exercise 33: Consider a generic derivative of the Riemann tensor,

∇pR = {Rµ1µ2µ3µ4;µ5... µ4+p
}.
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(Assume that the connection is metric-compatible.) Show that after all

the symmetries are taken into account, there are 1
2(p+ 1)(p+ 4) inde-

pendent permutations of the indices, modulo torsion and lower-order

derivatives of R. Namely, let (α, β, γ, δ, ǫ, . . . ) be a canonical order-

ing of the formal index list; then a nonredundant list of independent

components of the tensor ∇pR is

(a) Rαβγδ;ǫ...

(b) Rαβγµ;δ... for p choices of µ

(c) Rαγβδ;ǫ...

(d) Rαγβµ;ǫ... for p choices of µ

(e) Rαµβν;γ... for 1
2
p(p + 1) choices of pairs (µν) of canonically

ordered distinct indices chosen from (δ, ǫ, . . . ).

Parallel transport and geodesic distance;

covariant power series

Let x(τ) be a curve in M , and let φ(x) be a section, defined at

least on the [image of the] curve. One says that the values of φ are

parallel along x(τ) if (with respect to any gauge)

d

dτ
φ
(

x(τ)
)

+ wµ

(

x(τ)
)

φ
(

x(τ)
) dxµ

dτ
= 0. (8.22)

The left-hand side is called the absolute derivative of φ along the curve.

If φ is defined in an open neighborhood of the curve (at least), then

its covariant derivative is defined and the absolute derivative can be

expressed in terms of it as

ẋ(τ) · ∇φ ≡
dxµ

dτ
∇µφ

(

x(τ)
)

.

Suppose that x(0) ≡ x′, x(1) ≡ x, and we are given φ0 ∈ Fx′ .

Then the result of parallel transport of φ0 to x (along this particular

curve) is defined to be φ(1), where φ(τ) is the solution of the differential

equation (8.22) with initial value φ(0) = φ0. (φ(τ) is in Fx(τ) for

each τ .) Following DeWitt 1965, we write

φ(1) ≡ Ix(x, x′)φ0 . (8.23)

Ix is a one-to-one, linear mapping from Fx′ onto Fx ; in concrete terms,

it is a matrix-valued function of the two points, whose left index per-

tains to the fiber at x while its right index lives at x′. (Consequently,
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when I is covariantly differentiated with respect to x, for example, a

connection form wµ(x) attaches to the left index, but no connection

form is needed for the right index.)

What is parallel transport in our two standard, elementary exam-

ples? In the electromagnetic case, (8.22) is

dφ

dτ
+ iẋµAµφ = 0,

which is solvable in closed form:

φ1 = exp

(

−i

∫ x

x′

Aµ(y) dyµ

)

φ0 ,

where the line integral is along the curve y = x(τ). Thus

Ix(x, x′) = exp

(

−i

∫ x

x′

Aµ(y) dyµ

)

.

(In non-Abelian gauge theories Aµ is a matrix, (8.22) is a first-order

differential system, and hence it generally can’t be solved explicitly.

Physicists sometimes denote the parallel-transport matrix in that case

by

Ix(x, x′) = P exp

(

−i

∫ x

x′

Aµ(y) dyµ

)

,

where P indicates a path-ordered exponential summarizing the solution

of the equation by perturbation theory (i.e., as a power series in the

magnitude of A).) In the gravitational case, the equation of parallel

transport for a contravariant vector field is, from (8.5),

dvν

dτ
= −Γν

ρµv
ρẋµ. (8.24)

DeWitt 1965 and Christensen 1976 denote the resulting parallel-trans-

port matrix by gµ
ν′ , where primed indices refer to x′ and unprimed

ones to x.

Intuitively, one might prefer to take parallel transport as the fun-

damental notion and define covariant differentiation from it: In the

context of a vector bundle, the problem with defining a derivative by a

difference quotient,

dφ

dτ

∣

∣

∣

τ=0
≡ lim

∆τ→0

φ(x(∆τ))− φ(x(0))

∆τ
,
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is that we don’t know how to subtract values of φ at two different x’s.

But Ix gives us an identification of Fy with Fx′ , for each y on the curve

x. (This identification depends on the curve!) Therefore, it is possible

to modify the formula so that it makes sense: the absolute derivative

at 0 is

lim
∆τ→0

φ(x(∆τ))− Ix(x(∆τ), x(0))φ(x(0))

∆τ
.

Exercise 34: Verify this formula for the absolute derivative within

the framework of the definitions we’ve adopted. Would it matter if we

put the inverse of I on the first term instead of I on the second?

The curve x(τ) is a geodesic if its own tangent vector is parallel

along it. From (8.24), this condition is

d2xν

dτ2
= −Γν

ρµ

dxρ

dτ

dxµ

dτ
. (8.25)

This is a nonlinear second-order differential equation, which may be

treated like the equation of motion of a classical mechanical system.

Remark: The antisymmetric part of Γ, which is the torsion tensor,

makes no contribution to (8.25). Therefore, it is often said that the

geodesics of a manifold are independent of the torsion. There is a

complication, however: If a connection is metric-compatible and has a

torsion tensor which is not totally antisymmetric, then the symmetric

part of that connection is not the metric-compatible connection (8.21).

In such a situation there are two sets of geodesics, those defined by

the metric through (8.21), and those defined by the torsional, metric-

compatible connection. This is the reason why our discussions below of

Synge–DeWitt tensors and asymptotic expansions of Green functions

are limited to totally antisymmetric torsions.

The arc length along x(τ) from x′ to x is

s ≡

∫ 1

0

√

gµν ẋµẋν dτ .

(To avoid complications, assume momentarily that the metric is pos-

itive definite.) We are interested in this quantity almost exclusively

in the case that x(τ) is a geodesic. In practice we shall almost never

use the integral expression just given; certain formal properties of the

geodesic arc length suffice in all the many calculations involving it.
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We wish to regard the geodesic arc length (or geodesic distance)

as a function of two arguments, x and x′. Some questions of principle

need to be disposed of first. Two points in M may be joined by more

than one geodesic. (For example, if M is a 2-sphere with the usual

metric, then antipodal points are joined by infinitely many geodesics of

equal length, and a generic pair of points is joined by two arcs of a great

circle, one relatively short and one long.) Moreover, if the manifold is

incomplete, two points may not be joined by any geodesic at all. (Think

of two points on opposite sides of a “hole” cut out of the plane.) In

fact, the same is true for some complete pseudo-Riemannian manifolds;

the anti-DeSitter space described in Chapter 6 is an example. But it

is intuitively plausible that all x sufficiently close to a given x′ can

be joined to x′ by a geodesic, which can be uniquely and continuously

defined by characterizing it as the shortest geodesic between those two

points. In fact, more is true [Whitehead 1932; Friedlander 1975, Sec.

1.2]:

Theorem: Every point of M has a neighborhood D which is

geodesically convex (or normal); that is, any two points in D are joined

by precisely one geodesic segment which lies entirely in D.

(Note that a comma after “segment” would turn this proposition

into a falsehood!)

Henceforth we tacitly restrict our discussion to a normal neighbor-

hood. Define

σ(x, x′) ≡
1

2
s2.

This quantity was dubbed the world function by Synge 1960. Hada-

mard 1952, Synge 1960, and DeWitt 1965 have made marvelously pro-

ductive use of it. See also the expositions of Garabedian 1964, esp. Sec.

2.6 and Chap. 5, and Friedlander 1975, esp. Sec. 1.2 (both of whom

write 2Γ rather than σ). The world function is a C∞ function (given a

smooth metric to start from), unlike s, which has a conical singularity

at 0. Furthermore, σ has a natural extension to manifolds of indefinite

metric, in which case its values are (in my sign convention) positive for

timelike separation, negative for spacelike separation, and zero on the

light cone. In flat space, σ reduces to 1
2
‖x− x′‖2.

Differentiating this last expression, we see that

ηµν∂νσ = (x− x′)µ
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in flat space. The analogous statement in curved space is that−gµν∇νσ

is the tangent vector (to the geodesic) at x pointing toward x′ with

length equal to s. Since the vector ∇σ is even more important than

the scalar σ, it is customary to omit the semicolon in writing covariant

derivatives of σ:

σµ ≡ σ;µ, etc.

Another significant object is

σ̂µ ≡ −σµ′

,

which is the tangent vector at x′ pointing toward x with length s. (The

primed index denotes a derivative with respect to x′.)

...............................
.........................................

.................................................................................................................................................................................................................................................................................................................................................................
...............................................

.....................................
....................................

....................................
....................................

....................................
..............................
...........................

..................................................................................................................................................................................................................................................... ................
...........

•
•...........

....................................
....................................

....................................
....................................

....................................
.......................................................

...........................

..................................................................................................................................................................................................................................................... ................
...........

x′

xs s

σ̂

~σ

Thus the geodesics set up a one-to-one correspondence between a

neighborhood of x′ in M and a neighborhood of 0 in the tangent space

Tx′(M):

x←→ σ̂(x, x′).

The components of σ̂ form a special coordinate system, the Riemann

normal coordinates at x′. (Riemann normal coordinates can be con-

structed without reference to the world function; see, e.g., Parker 1979

or many textbooks on general relativity.) Alternatively, one may stick

to general coordinates, or to coordinate-free methods, and think of σ̂

as just a certain vector field. This latter approach combines the best

of both worlds: the advantages of a special coordinate system in a

manifestly covariant, or geometrically intrinsic, formalism.

From the geometric interpretation of the quantities involved, it is

obvious that

σ =
1

2
σµσ

µ. (8.26)

This first-order, nonlinear partial differential equation is also the Ham-

ilton–Jacobi equation associated with the mechanical system whose

“Newtonian” equation of motion is the geodesic equation, (8.25).
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Restricting attention to normal neighborhoods and to geodesics

within them renders the parallel-transport operator unique, so that

we may write I(x, x′) without ambiguity. Recall that I is, in effect,

defined by the differential equation ẋ ·∇I = 0 and the initial condition

I(x′, x′) = 1. In the present context, ẋ is proportional to the σ vector,

and so the equation can be written

σµI;µ = 0. (8.27)

In dealing with functions of two variables, f(x, x′), a convenient

shorthand is

[f ] ≡ f(x, x).

Such a quantity is often called a coincidence limit in the physics litera-

ture, although the word “limit” is misleading — the function is simply

to be evaluated at x = x′, with no commitment as to its continuity

there. (The preferred jargon in the mathematical literature is “value on

the diagonal”.) When f is a covariant derivative of something, primes

and the lack thereof on the indices are used to indicate which argu-

ment was the subject of the differentiation before the arguments were

set equal:

[B;µν′ ] ≡ ∇µ∇ν′B(x, x′)
∣

∣

x=x′ .

Note that [B];µ is not the same thing as [B;µ], since the former implic-

itly involves differentiation with respect to x′ as well as x. From the

multivariable chain rule (traditionally called Synge’s theorem in this

context), we have

[B];µ = [B;µ] + [B;µ′ ]. (8.28)

This principle can be used to obtain primed (and mixed) derivatives

easily from unprimed ones, and vice versa. Note that primed and un-

primed derivatives involve independent connections, so their order with

respect to each other is arbitrary. Therefore, the derivative to be elim-

inated can always be assumed to act last. In particular,

[σ̂µ
νρτ...] ≡ −[σµ′

νρτ...] = −[σνρτ...
µ′

] = ∇µ[σνρτ...]− [σνρτ...
µ]. (8.29)

Consider now a scalar function, f(x, x′) (where “scalar” means not

only that the dependent variable has only one — real or complex —

component, but also that the bundle connection is trivial). By the
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multivariable version of Taylor’s theorem, f (to whatever order it is

smooth) possesses a power-series expansion in the Riemann normal co-

ordinates of x about x′. The coefficients in the series are the coincidence

limits of the literal partial derivatives of f with respect to x. I claim,

however, that they may be replaced by the covariant derivatives:

f(x, x′) ∼ [f ] + [f;µ]σ̂µ +
1

2!
[f;µν ]σ̂µσ̂ν + · · · . (8.30)

Equivalently, the totally symmetric part of the covariant derivative is

equal to the literal derivative in normal coordinates. (In (8.30) and

the following discussion, the coincidence limits are evaluated at x′.

Equivalently, one can reverse the roles of the two points, putting primes

on all the derivatives.)

To see this, regard f(x, x′) as a function of the arc-length param-

eter, s, of the geodesic from x′ to x. Apply the single-variable Taylor

theorem and the chain rule:

f(x, x′) = f(x(s), x′)

∼ · · ·+
1

2

d2

ds̃2
(

f(x(s̃), x′)
)
∣

∣

s̃=0
s2 + · · ·

= · · ·+
1

2

d

ds̃

[

∇µf(x(s̃), x′)
dxµ

ds̃

]

s̃=0

s2 + · · · .

Absolute differentiation along the curve obeys the Leibnitz rule; we

use that fact to calculate the needed second derivative. The absolute

derivative of dxµ/ds̃ vanishes because the curve is a geodesic [(8.25)].

Thus the term is

1

2
∇ν∇µf(x(s̃), x′)

dxν

ds̃

dxµ

ds̃
s2 (s̃ = 0).

But dxµ/ds̃ is the unit tangent vector to the geodesic, which becomes

σ̂ upon absorbing a factor s. So we have reproduced the second-order

term in (8.30). The argument continues by induction to higher orders.

If f is replaced by a section of a vector bundle, (8.30) as it stands

does not make sense, because its two sides belong to different fibers.

However, inserting a parallel-transport operator makes it correct:

φ(x, x′) ∼

∞
∑

p=0

1

p!
I(x, x′)[φ;µ1... µp

]σ̂µ1 · · · σ̂µp . (8.31)
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The proof is the same as for (8.30), except that it must be applied to

I(x, x′)−1φ(x, x′) and that the absolute derivative makes its appearance

already in the first order. The absolute derivative of I vanishes [(8.27)].

Now take a covariant derivative of (8.30) with respect to x, recall-

ing that the coincidence limits there are independent of x. Take the

coincidence limit of the result, noting that [σ̂µ] = 0:

[f;ν ] = [f;µ][σ̂µ
ν ] .

Since ∇f is arbitrary, it must be true that [σ̂µ
ν ] = δµ

ν , or, equiva-

lently, [σµν ] = gµν . Considering higher derivatives of (8.30) in the

same way, one concludes that the totally symmetric (in the subscripts)

part of [σ̂µ
ν1... νp

] equals 0 whenever p 6= 1. Considering derivatives of

(8.31), one concludes in the same way that the totally symmetric part

of [Iµ1... µp
] is 0 whenever p 6= 0. These facts about the diagonal values

of derivatives of σ and I also follow easily from the explicit calculations

in the next section; reversal of the present argument then provides a

more concrete proof of (8.30) and (8.31) [cf. Widom 1980, reinterpreted

following Drager 1978].

Recursive calculations of the Synge–DeWitt tensors

The objects [σ̂λ
µν...], [σµν...], and [I;µν...] are of the utmost im-

portance in computing asymptotic expansions of Green functions of

partial differential operators, both by the classical HaMiDeW methods

described in the next chapter and by the more modern and more gen-

eral method of pseudodifferential operators [Widom 1980, Fulling &

Kennedy 1988]. As we’ve seen in (8.29), the first class of these is easy

to obtain from the second. Let us refer to the other two classes as the

Synge–DeWitt tensors. DeWitt 1965 gave an algorithm for calculating

them from the basic properties (8.26) and (8.27). It has been pushed to

high order, with various degrees of computer assistance, by Schimming

1981, Rodionov & Taranov 1987, Fulling 1989 and unpublished, and

Christensen & Parker 1989.

Remark: Widom 1980 gives a different algorithm, which, unlike

DeWitt’s, applies to connections which are not metric-compatible (or

have incompletely antisymmetric torsion). (In that context σ is not

defined, but σ̂µ is.) However, that approach requires consideration of

many more index permutations than does DeWitt’s (p! versus p).
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We already know that

[σ] = 0, [σµ] = 0, [σµν ] = gµν . (8.32)

To obtain the next item in the list by DeWitt’s method, differentiate

(8.26) three times:

σµνρ = σα
νρσαµ + σα

νσαµρ + σα
ρσαµν + σασαµνρ .

Take the coincidence limit, using (8.32):

[σµνρ] = [σµνρ] + [σνµρ] + [σρµν ].

Subtract 3[σµνρ] and use the Ricci identity:

−2[σµνρ] = ([σνµρ]− [σµνρ]) + ([σρµν ]− [σµνρ])

= [σνµρ]− [σµνρ] + ([σρµν ]− [σµρν ] + [σµρν ]− [σµνρ])

= [(Tα
µνσα);ρ] + [(Tα

µρσα);ν] + [Tα
νρσµα]− [σαR

α
µνρ]

= Tµνρ + Tµρν + Tνρµ

= Tµνρ ,

since T must be assumed antisymmetric. Therefore,

[σµνρ] = −1
2Tµνρ . (8.33)

In particular, [σµνρ] = 0 in a torsion-free theory, the case of usual

interest.

Exercise 35:

(a) Show that if there is no torsion, then

[σµνρτ ] = 1
3 (Rρµντ +Rτµνρ). (8.34)

(b) Find the torsion terms left out of (8.34). Answer:

−1
3
(Tµνρ;τ + Tµντ ;ρ) + 1

4
Tα

µνTαρτ −
1
12

(Tα
µρTαντ + Tα

µτTανρ).

Exercise 36:

(a) Show that the pth derivative of (8.26) is

σµ1... µp
=
∑

σα
ν1... νk

σαµ1ρ2... ρp−k
,
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where the sum is over all 2p−1 partitions of the formal index se-

quence (µ1, . . . , µp) into two subsequences (ν1, . . . , νk) and (µ1, ρ2,

. . . , ρp−k) with µ1 ≡ ρ1 belonging to the second sequence. (Both

subscript lists (not including α) remain in their natural order

within (µ1, . . . , µp).)

(b) Assuming no torsion, show in analogy with our treatment of the

case p = 3 that

[σµ1... µp
] =

1

p− 1

{ p
∑

i=2

i−1
∑

j=1

∑

subseqs.,
0≤k≤p−j−1

j−1
∑

l=1

[σµ1... µl−1αµl+1... µj−1ν1... νk
]Rα

µlµjµi;ρ1... ρp−j−1−k

−
∑

subseqs.,
2≤k≤[n/2]

[σαµ1ρ2... ρp−k
][σα

ν1... νk
]

}

.

In the first term the ν’s are a subsequence (of length k) of the

sequence (µj+1, . . . , µp) with µi omitted. In the other term the

ν’s are any subsequence of the original subscript list of length

k ≤ [n/2], with the proviso (to prevent double counting) that

ν1 = µ1 if k = n/2, and the ρ’s are the complementary sequence.

The formula in part (b) of this exercise is not yet a solution of the

recursion relation for [∇pσ], because it still involves [∇qσ] with q < p

on the right-hand side. But it is a start! The number of terms in

the explicit formula for [∇pσ] is extremely large if p ≥ 8. Research is

continuing on the use of computers to evaluate quantities formed from

[∇pσ] (such as the terms of the HaMiDeW series in the next chapter)

in an efficient way.

The derivatives of I can be computed similarly. We already know

that

[I] = 1 (the identity operator in the fiber). (8.35)

By differentiating (8.27), setting x′ = x, taking (8.32) into account,

and using the Ricci identity to isolate the derivative of highest order,

one finds

[Iµ] = 0, [I;µν ] = −1
2
Yµν , (8.36)

and higher-order formulas involving the Riemann (and torsion) tensors

as well as Y and its derivatives.
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The formulas for the tensors [∇pσ] and [∇pI] have the following

important qualitative properties (which can easily be proved by induc-

tion, absent an actual solution of the recursions):

(1) Each term is a product of covariant derivatives of the tensors R, T ,

and (in the case of I) Y .

(2) Each term in [∇p+2σ] or [∇pI] has order exactly p, in the following

sense: Count 1 for each explicit covariant differentiation, 2 for each

R, 1 for each T , and 2 for each Y , and add up. (Recall that T and

R respectively involve 1 and 2 differentiations of the metric tensor.)

The order of a quantity is the same as its physical dimension in

powers of [mass] or [length]−1, if h̄ = c = 1.

(3) There are no internal contractions (e.g., yielding Ricci tensors). In

fact, there are not even any closed loops of contractions involving

more than one factor. On the other hand, all the factors are linked

by contractions into a single structure, if the entire product of Y -

factors found in a term of [∇pI] is regarded as a single factor.

That is, in the terminology of graph theory [Harary 1969], the

contraction structure of a term is a tree — a graph which is both

acyclic and connected. The number of contractions is exactly one

fewer than the number of factors, as is clear from the way the

terms are built up [see Exercise 36(b)]. (According to Harary, this

is precisely the condition under which acyclicity and connectedness

become equivalent.)

Exercise 37: Show that any term of the tree form has the correct

relationship between order and number of free indices required for it

to be a potential term in the Synge–DeWitt tensor of the appropri-

ate order. (This does not mean that all possible tree terms actually

appear.)


