Math. 460, Sec. 500 Fall, 2011

Special Relativity and Electromagnetism

The following problems (composed by Professor P. B. Yasskin) will lead you
through the construction of the theory of electromagnetism in special relativity.
Please write your response as a connected essay, similar to a chapter of a
textbook. If possible, use TEX or a word processor so that you can make
revisions easily. See the course handout for due dates. You may consult books
and have discussions with other students, but outright copying (except from
the problems themselves, when appropriate) is not allowed.

We regard spacetime as the vector space R* with a Lorentz-signature metric (pseudo-
inner product). Thus, if we choose the orthonormal basis to be

eo = (1,0,0,0), €1 =(0,1,0,0), ey =(0,0,1,0), es5=(0,0,0,1)

(so that all indices run from 0 to 3), and the dual basis to be w®, then the metric is

-1 0 0 O
N = Nasw® ©w”, where 1,5 = 8 (1) (1) 8 ,
0 0 0 1
and the inverse metric is
-1 0 0 O
nt=ne, @ ep, where n®? = 8 é (1) 8
0 0 0 1

Derivatives will be denoted by 0, =

and 771,

—, and indices will be raised and lowered using 7

dae

In problems 1-11, we will study the electromagnetic field, which is the 2-form
0 —-F, —FEy —Fj3

FEq 0 By —Bs

Ey; —Bj 0 By |’

FEs By —B; 0

the electromagnetic potential, which is the 1-form

A=A w” where A, = (¢, A1, As, A3),

F=F,3w*® w? where F,g =

and the electromagnetic current, which is the vector

J=J%,  where J*=(p, J', J* J?).
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1. Show that the rank-3 tensor
Sozﬁv = avFaﬁ + aaFBv + aﬁFva

is totally antisymmetric, and hence is a 3-form. (There are three pairs of indices to
transpose.) Show that this implies that the components of S are all zero except for
those for which «a, 8, and v are distinct. Note: It is not necessary to write out a proof
in detail for every choice of the three indices. Start by showing that the formula for
S is unchanged when the three indices are subjected to a cyclic permutation.

Similarly, in the next few parts much writing can be saved by noting that the input
formulas are symmetric under cyclic permutations of the spatial indices (z — y — z — z).

2. Write out the components of the equations
0vFop +0aF3y +03Fye =0  and  9gF*F = 47"

to see that these are the Maxwell equations

—

B=o,
XE+at§:0,

< <

3. Write out the components of the equations
Fop = 0a,A — 03A,

to find expressions for E and B in terms of ¢ and A. (Note: ¢ is the negative of the
usual scalar potential.)

4. Show (in 4-dimensional notation) that if
Fop = 0,A — 03A,
is satisfied, then
(%Fag + 8QF57 + agFFya =0
is automatically satisfied. (Note: The 3-dimensional version of these equations is
a pair of identities: V-V x A = 0 and V x V¢ = 0.) Consequently, this subset

of the Maxwell equations is actually an identity; it is sometimes referred to as the
electromagnetic Bianchi identity.

5. Substitute
Fop = 0,A — 0A,

into the remaining Maxwell equation
s F*’ = drJ”

to obtain the Maxwell equation for A, . Note: Part 7 will be much easier if you carry
out Part 5 entirely in 4-dimensional notation.
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6. Let x be a function. Also let
Al =A,+0,x  and wp = 0o Ay — 0gA,, .

This is called a gauge transformation. Relate F, 5 to Fup to see that the electromag-
netic field is gauge-invariant.

7. The equation of motion you found above for A, can be simplified by a gauge trans-
formation. We will use (twice) the fact that a wave equation (00,1 = o) with an
arbitrary but specified source, o, always has a solution, ¥ (not unique). (Perhaps you
can find a reference for this theorem?) Given A, , show that there always exists a
function x such that A/, satisfies

9“Al = 0.
This gauge is called Lorenz gauge. Observe then that the components of the Maxwell

equation for A/ are wave equations, and conclude that they always have solutions for
any arbitrary but specified current J.

8. Write out the components of the equation
0o J* =0
to see that this is conservation of electric charge. Show that if
g FP = drJ”

is satisfied, then
0o J* =0

is automatically satisfied. This is sometimes referred to as an automatic conservation
law. (Hint: If A, is an expression symmetric in its indices and B*” is antisymmetric,
then one line of index algebra shows that A,, B*" = 0.)

9. Write out the function
1 yd
L — _ZF’Y Fys

in terms of E and B. This function is called the Lagrangian density for the vacuum
electromagnetic field. It is sometimes interpreted as the difference between the kinetic
energy +|E|? and the potential energy 3|B|?. Also write out the Lagrangian density

in terms of ¢ and A.
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10. Write out the components of the tensor

Taﬁzi

- (FCWFBV - %naﬁFvaF%)

in terms of E and E, to see that this consists of the electromagnetic energy density,
momentum density, energy current, and momentum current (or stress). This tensor
is called the Maxwell energy-momentum-stress tensor.

11. In 4-dimensional notation, compute the divergence of the energy-momentum tensor
and use the Bianchi identities and the Maxwell equations to show that

0T = —JsFP.

Problem 11 shows that the electromagnetic energy-momentum is not conserved if the
current is nonzero. The reason for this is that we have ignored the energy-momentum
of the charged particles producing the current. In problem 12, we study the motion of a
charged particle. Then in problem 13 we study the energy-momentum tensor of a fluid of
charged particles.

12. A particle of mass m with electric charge ¢ is moving on the parametrized path = (7)
where 7 is the proper time. Consequently, it has unit timelike tangent vector

a [e%
U=U%4,, where U® = Bi = (v, vy, yv?, yv?)
T

and where
1

Vi
Further, its 4-momentum is

pt =mU*.
Write out the components of the equations
U 05(p™) = qU Fg

to obtain the Lorentz force and power laws. (Hints: Don’t expand p®. Be careful with
the factors of ~.)
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13. Consider a fluid of charged particles of rest mass m and charge ¢, with fluid velocity U®
and energy density p in the instantaneous local rest frame. Then the charge density
in the instantaneous local rest frame is (¢/m)p and the electromagnetic current is

Jge =4 ,ye.
m

Assuming that the particles are non-interacting except for their electromagnetic forces,
then

(i) the energy momentum tensor for the fluid is that for dust:

TP = pUUP,

(ii) each particle moves according to the Lorentz force equation:

U 85(mU) = qUF?g,

(iii) the energy momentum tensor for the electromagnetic field is

[e% 1 « «
Tol = i (FTF?y — 0™ F°Fy) |

(iv) and the electromagnetic field satisfies the Bianchi identities and the Maxwell
equations with current J<.

Then, as seen in problem 8, the electromagnetic current is conserved:
OaJ* =0,
and, as seen in problem 11, the electromagnetic energy-momentum tensor satisfies
TP = — JgFb.
Now use the Lorentz force equation and the conservation of electromagnetic cur-
rent to show that the fluid energy-momentum tensor satisfies
BTl = JgFoP,

(Hint: Factor T | as
Tia = (U%) (pU7)

and use the product rule.) Thus the total energy-momentum is conserved:

I (Tf;ﬁd + Tearf) = 0.
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In problems 14 and 15, we study the behavior of the electromagnetic field under

rotations and Lorentz boosts. Under a general Lorentz transformation, AO‘/V , the electro-
magnetic field transforms according to

Forpr = Fys(A) o (A5

We then write

0 -E' —E?2 _FE3 0 -pY —gp? _fg%
EY 0 B3 B2 EY 0 BY _B?
Fo=\pg g o B and - Forgr =1 por_py BY
E3 B2 _B' 0 E¥Y B?Y _pB! 0

14. First assume that the Lorentz transformation is a rotation about the z-axis:

/ (1] 000 y cosw sinw 0
A", = where R'; = | —sinw cosw 0
0 R 0 0 1

0

Show that E and B transform as vectors:
E'=R';F7 and B =R';B’.

Show that this generalizes to arbitrary rotation matrices. (Try to give a conceptual
argument, not a grubby calculation.)

15. Now assume that the Lorentz transformation is a boost in the z-direction with velocity
U= veé,:
coshA 0 0 sinhA\
o 0 1 0 0
A%y = 0 0 1 0
sinhA 0 0 coshA\

1 v =
———— and sinh A = yv = ——. Find expressions for £’
V1—0v? 1—02

and B’ in terms of E and B and either \ or v.

where cosh A =~ =

In problems 16 and 17, we study the Lagrangian and Hamiltonian formulations of
electromagnetism. Each problem begins with a discussion of the analogous formulation
of classical mechanics and the situation for a general field theory with fields ¥4, for A =
1,...,N. Then the special case of electromagnetism is treated with 1)* replaced by A,.
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16. In classical particle mechanics, the Lagrangian is
L=T-V=1imlo?-Vv(@).

az

as independent
di p

In discussing this Lagrangian, it is useful to regard ¥ and ¢ =

variables. One then computes

oL OL
g —-0;V and pi = 90

= muv; .

(The quantity p; is called the momentum conjugate to z¢.) Then the Euler-Lagrange
equations for this Lagrangian are

d OL 0L

dtovi  oxi

or

d

%(mvi) +0;V =0,

which is Newton’s equation with the force identified as F; = —0;V, the gradient of
the potential.

Similarly, in field theory, in discussing a Lagrangian density, £, it is useful to
regard the fields 14 and their derivatives 0,14 as independent variables. One then
computes

oL and wa® — oL
Oy T 00.04

(The quantity 74 = 74° is the conjugate momentum to ¥*, while the 4-vector m4® is
sometimes called the conjugate multimomentum to ¢“ .) Then the Euler-Lagrange
equations for the Lagrangian density, £, are

oL oL
0 ()~ 5o =0

Both sets of Euler-Lagrange equations given above can be derived from appro-
priate variational principles. In this exercise, we apply the field theory version to the
vacuum Maxwell Lagrangian density,

L=-1F"F;.

Compute
oL wp  OL

and T =

94, 005,




17.
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Identify the conjugate momenta to Ag = ¢ and to A;:

a0 a£
000 As

ﬂ_oz

™

Compute the Euler-Lagrange equations

oL oL
% (aaﬁAa) “ o4,

and verify that these are the vacuum Maxwell equations.

Hints: Explicitly write out all metrics in £ (but do not use a or 8 as dummy
indices). At the first step, do not expand F' in terms of derivatives of A. Use the
chain rule. Then compute the derivatives of F' using formulas such as

005 A,
005 A0

= 0507 .

In classical mechanics, the Hamiltonian is
H = pv' — L(Z,7)
but expressed as a function of £ and p":

p p - p _,
H=——]—— =
m [Qm V(m)}

Similarly, for a field theory, the Hamiltonian density is

H = ma0pp® — L(p?, Darp™),

but expressed as a function of ¥4, 9;94, and m4. For electromagnetism with no
sources (J* = 0), express the Hamiltonian density

H =100 A0 — L(Ag, 05Aa)

as a function of Aa, 0;Aq, and the non-zero components of 7%. Then express H as a
function of E and B to see whether the Hamiltonian density, H, is equal to the energy
density, T°°. If not (SPOILER ALERT!), show that nevertheless their integrals give the
same total energy, if the fields fall off fast enough at infinity.



