
Math. 460 (Fulling) 9 December 2019

Final Examination – Solutions

1. (40 pts.) In 4-dimensional space-time the Riemann tensor, Rαβγδ , has 44 = 256 compo-
nents. Show why only 20 of them are independent.

(Start by listing the index symmetries of the Riemann tensor. Treat R as a square matrix
whose indices are antisymmetric pairs of space-time indices.)

There are three basic symmetries:

Rαβδγ = −Rαβγδ (antisymmetry) ,

Rγδαβ = Rαβγδ (pair symmetry) ,

Rαβγδ + Rαγδβ +Rαδβγ = 0 (cyclic symmetry) .

Others follow from these; in particular, R is antisymmetric in the first index pair as well.
Given the antisymmetry (and dimension = 4), there are 4×3

2
= 6 independent index pairs, each

containing distinct indices with order not mattering. With respect to these superindices, R is a
symmetric matrix, with

6(diagonal) +
6× 5

2
= 21

independent elements. It remains to investigate the effects of the cyclic symmetry. If two indices are
equal, say α and β , the identity has only two terms,

Rαγδα +Rαδαγ = 0 .

But this follows from the other two symmetries and thus tells us nothing new. If the indices are
distinct (which can happen in only one essentially different way in dimension 4), the identity allows
one permutation to be replaced by the sum of two others. Therefore, there are exactly 20 independent
components (in a generic space-time).

2. (10 pts.) Consider a metric of the form

ds2 = −dt2 + C(x)2 dx2 + dy2 + dz2.

Here C(x) is a function only of x . Show that this space-time is (at least locally) flat!

(Don’t calculate a Riemann tensor. If you need to spend more than 2 minutes on this
question, you have missed the point.)

Introduce a new coordinate by dw = C(x) dx (implemented by w =
∫

C(x) dx ). Then

ds2 = −dt2 + dw2 + dy2 + dz2,

which is the metric of ordinary special-relativistic Minkowski space.

3. (40 pts.) Recall that the main dynamical equation for a homogeneous, isotropic universe
is

(

ȧ

a

)2
+

k

a2
−

Λ

3
=

8πG

3
ρ .

(Here a(t) is the Robertson–Walker scale factor, loosely called “radius of the universe”,
which is sometimes denoted R(t) .) G , k , and Λ are constants (G positive).

(a) Explain what k is.
k represents the spatial curvature of the universe (as a three-dimensional manifold at each fixed
time). It is positive if the space is a three-dimensional sphere, zero if the space is flat, and negative if
the space is hyperboloidal (like a saddle). When k is not zero, a can be rescaled to make |k| = 1 .
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(b) Suppose that ρ = Ca−4 . (C is a positive constant.) What sort of matter predomi-
nates in this universe, and what is the corresponding pressure?

radiation (massless particles), for which p = 1

3
ρ .

(c) Suppose that ρ is as in (b) and that k > 0 . Find a Λ capable of making a indepen-
dent of time.

If ȧ = 0 , the Einstein equation becomes

k

a2
−

Λ

3
=

8πGC

3
a−4 .

Solve:

Λ =
3k

a2
−

8πGC

a4
.

So, for any a0 there is a Λ that makes a(t) = a0 a solution.

(d) Show that the other Einstein equation,

2ä

a
+

(

ȧ

a

)2

+
k

a2
− Λ = − 8πGp ,

unexpectedly provides an additional constraint among k , C , Λ , and a in this static
situation.

In our case this equation becomes just

Λ =
k

a2
+

8πGC

3a4
.

Combined with the result of (c), this implies

2k

a2
=

32πGC

3a4
,

or

a =

√

16πGC

3k
.

Thus there is one less degree of freedom in the parameters of the model than we thought in (c). (The
standard proof that the second Einstein equation adds no information to the first involves cancelling
a factor ȧ/a , so it is not valid for a static solution.)

4. (Essay – 30 pts.) The Schwarzschild metric is

ds2 = −

(

1−
2M

r

)

dt2 +

(

1−
2M

r

)−1

dr2 + r2 dθ2 + r2 sin2 θ dφ2.

It has mathematical singularities at r = 2M and r = 0 . Describe (physically and
geometrically) what actually happens at those places.
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5. (40 pts.) Do ONE of these [(A) or (B)]. If you try both, clearly indicate which one

you want graded.

(A) Recall that under a non-Abelian gauge transformation, U(x) , a connection form trans-
forms by the law

w̃µ = UwµU
−1

− (∂µU)U−1 or U(wµ − U−1∂µU)U−1 ,

and also that the gauge field strength is defined by

Yµν = wν,µ − wµ,ν + [wµ, wν ] .

Show that under a gauge transformation, Y transforms as a gauge tensor:

Ỹµν = U(x)Yµν(x)U(x)−1 .

Hint: ∂µ(U
−1) = −U−1(∂µU)U−1 .

[See either qu. 4 of 2008 final or qu. 4(A) of 2013 final.]

(B)

(a) Show that if a vector field ξα satisfies Killing’s equation,

∇αξβ +∇βξα = 0,

then
pαξ

α = constant

along the geodesic with tangent vector ~V =
~p

m
.

[See qu. 2(a) of 2009 Test B. The rest of that question is equivalent to the rest of this one, but I
prefer to write out new solutions for the latter.]

(b) Show that if the metric coefficients gµν are all independent of a particular coordi-

nate xβ , then the vector field ξα = δαβ satisfies Killing’s equation.

Because the covariant derivative of the metric is 0,

∇αξβ = gβγ∇αξ
γ = gβγ∂αξ

γ + gβγΓ
γ
δα

ξδ .

Here the first term is 0 because ξγ is constant, and the second is, by the formula for Γ ,

1

2

(

gβα,δ + gβδ,α − gδα,β
)

ξδ.

Here the last two terms together are antisymmetric in α and β , while the first term is symmetric.
Therefore,

∇αξβ +∇βξα = gαβ,δξ
δ = gαβ,β = 0

because g is independent of β .
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(c) What conclusion can you draw by combining (a) and (b)?

If the metric is independent of xβ , then the conjugate momentum pβ is conserved.

6. (Essay – 40 pts.) Tell me what you know about TWO of these topics.

(A) The independent degrees of freedom of the electromagnetic and gravitational fields.

(B) Parallel transport and its relation to curvature. (Emphasize geometrical concepts
rather than trying to reconstruct equations.)

(C) Lagrangians and variational principles for geodesics.

(D) The equation of geodesic deviation,

D2wα

dλ2
= Rα

µνβ uµuνwβ .

(Explain what the symbols mean and what the equation has to do with tides.)

(E) The Penrose–Floyd process of energy extraction from a rotating black hole.


