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Introductory Remarks

Is this a math course or a physics course?

General relativity is taught in the mathematics department at the under-
graduate level (as well as the physics department at the graduate level) because
–

• There are faculty members in the math department doing research in areas
related to general relativity.

• An introductory GR course requires a large dose of special mathematics, not
encountered in other branches of physics at the undergraduate level (tensors,
manifolds, curvature, covariant derivatives). Many of these do have modern
applications outside relativity, however.
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• You asked for it. Undergraduate physics majors agitated for the course on a
fairly regular basis until both departments were convinced that it should be
offered on a biennial basis (alternating with Math 439, Differential Geometry
of Curves and Surfaces, in the fall).

This course will do very little with observational astrophysics, gravitational
wave detectors, etc. That is left for the physics department (whose full name is
now Physics and Astronomy!).

Schutz’s (formerly) green book (now blue) is a physicist’s book, but with
a good treatment of the math; in particular, an excellent pedagogical balance
between modern abstract language and classical “index” notation.

3



Content and organization of the course

We will follow Schutz’s book closely, skipping Chapter 9 (gravitational waves)
and downplaying Chapter 4 (fluids). There will be external material on electro-
magnetism (you do the work) and on gauge field theories as another application
of covariant derivatives (I do the work).

∇µ =
∂

∂xµ
+ Γρ

νµ vs. Dµ =
∂

∂xµ
− ieAµ .

We need to cover about a chapter a week on average, but some will take
more time than others.

The main business of the first 11
2 weeks will be quick reviews of special

relativity and vectors, Chapters 1 and 2. For these chapters systematic lectures
are not possible; we’ll work mostly with exercises. Try to read Chapter 1 by
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next time (hard part: Secs. 1.5 and 1.6). Be prepared to ask questions or work
problems.

Usually, I will lecture only when I have something to say in addition to what’s
in the book. Especially at the beginning, considerable time will be devoted to
class discussion of exercises. There is, or will be, a list of exercises on the class
web page. Not all of the exercises will be collected and graded. As the semester
proceeds and the material becomes less familiar, the balance in class will shift
from exercises to lecturing, and there will be more written work (longer exercises,
but many fewer of them).

Some other books
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physics←→ mathshort

x





y

Berry
QB981.B54

Rindler
QC173.55.R56.1977

gray Schutz
QC207.D52.S34

easy O’Neill
QA641.05

Hartle

D’Inverno
QC173.55.D56.1992

Walecka
QC173.6.W36.2007

Narlikar
QC173.6.N369.2010

Frankel
QC173.55.F7

Stephani
QC178/S8213.1990

Carroll
QC173.6.H63.2006eb

Hobson-Ef.-L.
QC173,6.H63.2006eb

Dodson–Poston
QA649.D6.1990

Burke
QC20.7.D52.B87.1985

Ohanian
QC178.O35

big Will
QC178.W47

Weinberg
QC6.W47

Adler–Bazin–Schiffer
QC173.6.A34.1975

Misner–Thorne–Wheeler
QC178.M57

Wald
QC173.6.W35.1984

big O’Neill
QA3.P8.v103

Isham
QA641.I84.1999

Bishop–Goldberg
A433.B54

Lovett
QA649.L68.2010

Grøn–Hervik
QC173.55.O55.2007eb

big Frankel
QC20.F7.2004

Poisson
QC173.6.P65.2004eb

Zel’dovich–Novikov
QB461.Z4413

Choquet–DeWitt–D.
QC20.7.A5.C48.1982
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Review of Special Relativity (Chapter 1)

Recommended supplementary reading: J. R. Newman, “Einstein’s
Great Idea”, in Adventures of the Mind, ed. by R. Thruelsen and J. Kobler
(Knopf, New York, 1959), pp. 219–236. CB425.S357. Although “popular”, this
article presents a number of the important ideas of relativity very well.

(While on the subject of popularizations, I want to mention that one of the
best recent popular books on relativity is C. Will, Was Einstein Right? (Basic
Books, New York, 1986); QC173.6.W55.1986. The emphasis is on experimental
and observational tests, especially those that are still being carried out. Will also
has a more technical book on that topic.)

G. Holton, “Einstein and the ‘crucial’ experiment”, Amer. J. Phys. 37 (1969)
968. Cf. Schutz p. 2: “It is not clear whether Einstein himself was influenced by
[the Michelson–Morley experiment].” Einstein wrote, “In my personal struggle
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Michelson’s experiment played no role or at least no decisive role.” But when
he was writing in general terms about the justification of special relativity or its
place in physics, he would mention the experiment.

We must emphasize the geometrical viewpoint (space-time).

Space-time diagrams are traditionally drawn with time axis vertical, even
though a particle path is x = f(t). Thus the slope of the worldline of a particle
with constant velocity v is 1/v.

Natural units: We take the speed of light to be c = 1. For material bodies,
v < 1.

[time] = [length].

Later we may also choose

h̄ = 1 [mass] = [length]−1
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or
G = 1 [mass] = [length]

or both (all quantities dimensionless).

Inertial observer = Cartesian coordinate system = Frame

An idealized observer is “someone who goes around collecting floppy disks”
(or flash drives?) from a grid of assistants or instruments. Cf. M. C. Escher’s
etching, “Depth”. This conception avoids the complications produced by the finite
speed of light if one tries to identify the empirical “present” with what a human
observer “sees” at an instant of time. (The latter corresponds to conditions on a
light cone, not a time slice.)

Here we are walking into a notorious philosophical issue: how empirical is
(or should be) physics? Einstein is quoted as saying that in theoretical physics we
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make ourselves pictures of the world, and these are free creations of the human
mind. That is, sound science must be consistent with experiment, it must be
testable by experiment, but it is not merely a summary of sensory data. We
believe in physical objects, not just perspective views (permanent, rectangular
windows, not fleeting trapezoids).

An operational definition of the time slices for an inertial observer is analo-
gous to the construction of a perpendicular bisector in Euclidean geometry: We
demand equal times for the transmission and reflection of light pulses from the
“events” in question. (See Schutz, Sec. 1.5.)

However, this association of frames with real observers must not be taken
too literally. Quotation from E. Schrödinger, Expanding Universes (Cambridge
U. P., 1957), p. 20:

[T]here is no earthly reason for compelling anybody to change the frame
of reference he uses in his computations whenever he takes a walk. . . . Let me
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on this occasion denounce the abuse which has crept in from popular exposés,
viz. to connect any particular frame of reference . . . with the behaviour (mo-
tion) of him who uses it. The physicist’s whereabouts are his private affair.
It is the very gist of relativity than anybody may use any frame. Indeed, we
study, for example, particle collisions alternately in the laboratory frame and
in the centre-of-mass frame without having to board a supersonic aeroplane
in the latter case.

References on the twin (clock) paradox

1. E. S. Lowry, The clock paradox, Amer. J. Phys. 31, 59 (1963).

2. C. B. Brans and D. R. Stewart, Unaccelerated-returning-twin paradox in flat
space-time, Phys. Rev. D 8, 1662–1666 (1973).

3. B. R. Holstein and A. R. Swift, The relativity twins in free fall, Amer. J.
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Phys. 40, 746–750 (1972).

Each observer expects the other’s clock to run slow by a factor

1

γ
=

√

1− β2
(

β ≡ v

c
= v
)

.

One should understand what is wrong with each of these canards:

1. “Relativity says that all observers are equivalent; therefore, the elapsed times
must indeed be the same at the end. If not, Einstein’s theory is inconsistent!”

2. “It’s an acceleration effect. Somehow, the fact that the ‘younger’ twin accel-
erates for the home journey makes all the difference.”

And here is another topic for class discussion:
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3. Explain the apparent asymmetry between time dilation and length contrac-
tion.

Miscellaneous remarks

1. In relativity and differential geometry we normally label coordinates and
the components of vectors by superscripts, not subscripts. Subscripts will
mean something else later. These superscripts must not be confused with
exponents! The difference is usually clear from context.

2. In the metric (1.1), whether to put the minus sign with the time or the space
terms is a matter of convention. Schutz puts it with time.

3. Space-time geometry and Lorentz transformations offer many analogies with
Euclidean geometry and rotations. See Problem 19 and Figures 1.5 and 1.11,
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etc. One thing which has no analogue is the light cone.

4. When the spatial dimension is greater than 1, the most general Lorentz
transformation involves a rotation as well as a “boost”. The composition of
boosts in two different directions is not a pure boost. (Details later.)

5. There are various assumptions hidden in Sec. 1.6. Most seriously, the author
assumes that the natural coordinates of two inertial frames are connected
by a linear relation. The effect is to exclude curved space-times of maximal
symmetry, called de Sitter spaces. If you have learned something about Lie
algebras, I recommend

H. Bacry and J.-M. Lévy-Leblond, Possible kinematics, J. Math. Phys.
9, 1605–1614 (1968).
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Some details about the twin paradox

First review the standard situation of two frames in relative motion at speed
v. The t′ axis (path of the moving observer) has slope 1/v. The x′ axis and all
other equal-time hypersurfaces of the moving observer have slope v.
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x

x′
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⊤
ǫ

⊥
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t

Second, consider the standard twin scenario as
graphed by Lowry (and Schutz in the appendix to
Chapter 1).

Let the starting point be t = t′ = 0, x = x′ = 0,
and let the point of return be (0, t) in the stationary
frame. The stationary observer attributes a time dila-
tion to the moving clock:

t′ =
t

γ

where γ = (1 − v2)−1/2 > 1. The moving observer
attributes to the stationary clock a similar dilation
plus a gap:

t =
t′

γ
+ ǫ.
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Let’s calculate ǫ: Consistency requires

ǫ = t− t′

γ
= t

(

1− 1

γ2

)

= v2t,

since

1

γ2
= 1− v2.

To see this a different way, let T = t/2 and observe that the distance traveled
outward is L = vT . Therefore, since t′ = const surfaces have slope v. the half-gap
is τ = vL = v2T . Thus ǫ = 2τ = 2v2T = v2t, as claimed.
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Third, consider the Brans–Stewart model with circumference 1.
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Here the dashed line is a natural continuation of the line t′ = 0. That line and
all its continuations are the closest thing we have to an x′ axis in this situation.
Label the spacing on the t axis between the solid and dashed lines as δ.

Follow the moving observer (whose worldline is the t′ axis) around the cylin-
der back to the starting point (the t axis). In continuously varying coordinates
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this happens at x = 1, not x = 0. The distance traveled is vt, but it also equals
1, so we have

t =
1

v
.

Again we can say that from the stationary point of view, elapsed times satisfy
t′ = t/γ, and from the moving point of view they must satisfy t = t′/γ + ǫ for
some gap ǫ, although the geometrical origin of the gap may not be obvious yet.
So by the same algebra as in the Lowry case, ǫ = v2t. But in the present case
that implies

ǫ = v.

How can we understand this result? Follow the x′ axis (t′ = 0 curve) around
the cylinder; it arrives back at the t axis at t = δ. In stationary coordinates
the distance “traveled” by this superluminal path is 1, but its “speed” is 1/v.
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Therefore, 1 = δ/v, or
δ = v = ǫ.

Thus ǫ is the spacing (in t, not t′) of the helical winding of the x′ axis. This
shows that the gap term in the moving observer’s calculation of the total time of
his trip in the stationary observer’s clock comes from jumping from one labeling
of some t′ = const curve to the next (from t′ to t′ + γǫ).

Another way of looking at it is to use (5) of the Brans–Stewart paper, spe-
cialized to n = −1. This is the claim that the coordinates

(x′, t′) and (x′ − γ, t′ + γv)

represent the same event (space-time point). We can check this from the Lorentz
transformation (inverted from (4) of Brans–Stewart)

x =γ(x′ + vt′),

t =γ(t′ + vx′) :
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we get

xnew = γ(x′ − γ + v(t′ + γv)) = γ2(v2 − 1) + γ(x′ + vt′) = x− 1,

tnew = γ(t′ + γv + v(x′ − γ)) = γ(t′ + vx′) = t ;

but x and x− 1 are equivalent, since x is periodic.

Now, if as we agreed

t′ =
t

γ
, (∗)

then

t′ + γǫ = γ

(

t′

γ
+ ǫ

)

,

or (since we also agreed t = t′/γ + ǫ))

t′ + γǫ = γt. (#)
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Comparing (∗) and (#), we see that the γ has “flipped” exactly as needed to
make the time dilation formula consistent for each observer, provided we insert a
gap term γǫ.
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Vectors (Chapter 2)

One must distinguish between vectors as “geometrical objects”, independent
of coordinate system, and their coordinate (component) representations with re-
spect to some particular coordinate system. Each is valuable in its proper place.
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There are two prototypes of vectors in space-time:

• the displacement of one point from another:

(∆t,∆x,∆y,∆z) (∆t ≡ t2 − t1 , etc.).
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• the tangent vector to a curve:

{

dxµ(s)

ds

}

(where s is any parameter).

The second is a limiting case of the first (in the sense that derivatives are limiting
cases of finite differences). In curved space the first becomes problematical (points
can’t be subtracted), so the second becomes the leading prototype.

Both of these are so-called contravariant vectors. The other type of vectors,
covariant vectors or covectors, will have as their prototype the gradient of a
function:

{

∂φ

∂xµ

}

.
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Notation: The summation convention applies to a pair of repeated indices,
one up and one down:

Λα
βv

β ≡
3
∑

β=0

Λα
βv

β.

This is used also for bases:
~v = vα~eα .

Schutz uses arrows for 4-dimensional vectors and boldface for 3-dimensional ones.
Later, covectors will be indicated with a tilde:

ω̃ = ωαẼ
α.

Basis changes vs. coordinate transformations: Suppose we have two
bases, {eα} and {dα}.

~v = vα~eα = vβ ~dβ .
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Then
vβ = Λβ

αv
α ⇐⇒ ~eα = Λβ

α
~dβ .

Thus the coordinates and the bases transform contragrediently to each other: Λ
vs. (Λt)−1. Later we will find that covector coordinates behave like contravariant
basis vectors and vice versa.

4-velocity: Mathematically, this is the normalized tangent vector to a time-
like curve:

Uµ =
dxµ

ds
√

∣

∣

∣

(

d~x
ds

)2
∣

∣

∣

where s is any parameter. We can introduce proper time by

dτ ≡

√

√

√

√

∣

∣

∣

∣

∣

(

d~x

ds

)2
∣

∣

∣

∣

∣

ds;
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then

Uµ =
dxµ

dτ
.

Proper time is the Lorentzian analogue of arc length in Euclidean geometry.

The ordinary physical velocity of the particle (3-velocity) is

v =
U

U0
.

Thus

U0 =
1√

1− v2
= γ ≡ cosh θ, U j =

vj√
1− v2

= v̂ sinh θ (U = γv).

In the particle’s rest frame, ~U = ~e0 .
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As Schutz hints in Sec. 2.3, “frame” can mean just a split into space and time,
rather than a complete basis {~e0, ~e1, ~e2, ~e3}. A frame in this sense is determined

by ~U or by v. Different bases compatible with a frame are related by rotations.
Compare the eigenspaces of a matrix with the characteristic polynomial (λ −
λ0)(λ − λ1)

3; compare the directions in space that are important to a house
builder, with or without a street laid out.
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4-momentum: With a physical particle (or, indeed, a compound physical
system) is associated a rest mass, m, and a 4-vector

~p = m~U.
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Then ~p2 = −m2 (the square being with respect to the Lorentz inner product);
and in the rest frame, p0 = m. In another Lorentz frame,

p0 =
m√

1− v2
= m+

1

2
mv2 + · · ·

(the energy),

pj =
mvj√
1− v2

(the momentum, which is γ times the nonrelativistic 3-momentum, mv).

Why is momentum defined this way? As Rindler says (Essential Relativity,
p. 77),

If Newton’s well-tested theory is to hold in the “slow-motion limit,” and un-
necessary complications are to be avoided, then only one Lorentz-invariant
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mechanics appears to be possible. Moreover, it is persuasively elegant, and
far simpler that any conceivable alternative.

That is,

1. Kinetic energy and ordinary 3-momentum are important quantities; the 4-
momentum construction puts them together into a geometrical object (that
is, their values in different reference frames are related so as to make the pµ

transform like the components of a vector).

2. 4-momentum is conserved (e.g., in collisions).

Ninitial
∑

i=1

~pi =

Nfinal
∑

i=1

~p ′
i

This conservation law
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i) is Lorentz-covariant;

ii) reduces to the Newtonian momentum and energy conservation laws
when the velocities are small.

It is a postulate, verified by experiment.

If time permits, I shall return to Rindler’s argument for the inevitability of
the form of the 4-momentum.

Photons travel along null lines, so they have ~p 2 = 0. Therefore, for some
constant h̄ω we must have

~p = h̄ω(1, n̂), |n̂| = 1.

A photon has no rest frame. Recall that a null vector or null line is perpendicular
to itself in the Lorentz scalar product!
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The Compton effect (Exercise 32)

This is a famous application of vectorial thinking.

•.................................................................................................................................................................. .............
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P = 0

The (historically important) problem is to find the relation between ω′ and θ.

Incoming electron: ~P = (m, 0).

Incoming photon: ~p = h̄ω(1, n̂).
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Outgoing electron: ~P ′ =?.

Outgoing photon: ~p ′ = h̄ω′(1, n̂′).

These equations are at our disposal:

~P + ~p = ~P ′ + ~p ′,

(~P ′)2 = ~P 2 = −m2, ~p 2 = (~p ′)2 = 0.

Thus (arrows omitted for speed)

(P ′)2 = [P + (p− p′)]2 = P 2 + 2P · (p− p′) + (p− p′)2

implies

0 = 2P · (p− p′)− 2p · p′.
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Substitute the coordinate expressions for the vectors, and divide by 2h̄:

m(ω − ω′) = h̄ωω′(1− n̂ · n̂′).

Divide by m and the frequencies to get the difference of wavelengths (divided by
2π):

1

ω′
− 1

ω
=

h̄

m
(1− cos θ).

(h̄/m is called the Compton wavelength of the electron.) This calculation is gener-
ally considered to be much simpler and more elegant than balancing the momenta
in the center-of-mass frame and then performing a Lorentz transformation back
to the lab frame.

Inevitability of p = γmv

I follow Rindler, Essential Relativity, Secs. 5.3–4.
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Assume that some generalization of Newtonian 3-momentum is conserved.
By symmetry it must have the form p =M(v)v. We want to argue that M =
mγ.

Consider a glancing collision of two identical particles, A and B, with respec-
tive initial inertial frames S and S. S moves with respect to S at velocity v in the
positive x direction. After the collision, each has a transverse velocity component
in its own old frame. (Say that that of S is in the positive y direction.) From the
symmetry of the situation it seems safe to assume that these transverse velocities
are equal and opposite; call their magnitude u.
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From the relativistic velocity addition law (see below), we find that the
transverse velocity of B relative to S is

u

γ(v)(1 + uxv)
.

The assumed transverse momentum conservation in S thus implies

M(u)u =M
(

u
∣

∣

S

) u

γ(1 + uxv)
.
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In the limit of a glancing collision, u and ux approach 0, and hence u → 0,
u
∣

∣

S
→ v. Thus

M(v)

γ(v)
=M(u)→ m,

Q.E.D.

Velocity addition law

Following Rindler Sec. 2.15, let’s examine how a velocity u with respect to a
frame S transforms when we switch to a frame S moving with velocity v relative
to S. Recall:

1. In nonrelativistic kinematics, u = v + u.
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2. If the motion is all in one dimension,

u =
v + u

1 + vu
,

corresponding to addition of the rapidities (inverse hyperbolic tangents of
the velocities). Our formula must generalize both of these.

By definition,

u = lim

(

∆x

∆t
,
∆y

∆t
,
∆z

∆t

)

,

u = lim

(

∆x

∆t
,
∆y

∆t
,
∆z

∆t

)

,

Apply the Lorentz transformation, ∆x = γ(∆x− v∆t), etc.:

u =

(

ux − v

1− vux
,

uy

γ(1− vux)
,

uz

γ(1− vux)

)

.
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The standard form of the formula is the inverse of this:

u =

(

ux + v

1 + vux
,

uy

γ(1 + vux)
,

uz

γ(1 + vux)

)

.

The transverse part of this result was used in the momentum conservation
discussion above.

Note that the formula is not symmetric under interchange of v and u. The
two results differ by a rotation. This is the same phenomenon discussed in Schutz,
Exercise 2.13, and a handout of mine on “Composition of Lorentz transforma-
tions”.
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Tensors (Chapter 3)

I. Covectors

Consider a linear coordinate transformation,

xα = Λα
βx

β .

Recall that {xα} and {xβ} label the same point ~x in R4 with respect to different
bases. Note that

∂xα

∂xβ
= Λα

β .

Tangent vectors to curves have components that transform just like the coordi-
nates of ~x: By the chain rule,

vµ ≡ dxµ

ds
=

∂xµ

∂xν

dxν

ds
= Λµ

νv
ν .
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Interjection (essential to understanding Schutz’s notation): In this chapter

Schutz assumes that Λ is a Lorentz boost transformation,
{

Λα
β

} O← Λ(v). (This
is unnecessary, in the sense that the tensor concepts being developed apply to
any linear coordinate transformation.) The mapping in the inverse direction is
Λ(−v), and it is therefore natural to write for its matrix elements Λ(−v) = Λγ

δ ,
counting on the location of the barred indices to distinguish the two transforma-
tions. Unfortunately, this means that in this book you often see a Λ where most
linear algebra textbooks would put a Λ−1.

The components of the differential of a function (i.e., its gradient with respect
to the coordinates) transform differently from a tangent vector:

df ≡ ∂f

∂xµ
dxµ ≡ ∂µf dxµ

(with the summation convention in force);

∂µf =
∂f

∂xµ
=

∂f

∂xν

∂xν

∂xµ
= Λν

µ ∂νf.
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The transformation is the contragredient of that for tangent vectors. (The trans-
pose is explicit; the inverse is implied by the index positions, as just discussed.)

These two transformation laws mesh together nicely in the derivative of a
scalar function along a curve:

df

ds
=

∂f

∂xµ

dxµ

ds
= (∂µf) v

µ. (1)

(Here it is understood that we evaluate ∂µf at some ~x0 and evaluate vµ at the
value of s such that ~x(s) = ~x0 .) It must equally be true that

df

ds
= (∂νf) v

ν . (2)

The two mutually contragredient transformation laws are exactly what’s needed
to make the chain-rule transformation matrices cancel out, so that (1) and (2)
are consistent.
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Moreover, (1) says that {∂µf} is the 1 × n matrix of the linear function

~v 7→ df
ds (R4 → R), ~v itself being represented by a n× 1 matrix (column vector).

This brings us to the modern definition of a covector:

Definition: For any given vector space V, the linear functions ω̃:V → R
are called linear functionals or covectors, and the space of all of them is the dual
space, V*.

Definition: If V ( ∼= R4) is the space of tangent vectors to curves, then
the elements of V* are called cotangent vectors. Also, elements of V are called
contravariant vectors and elements of V* are called covariant vectors.

Definition: A one-form is a covector-valued function (a covector field).
Thus, for instance, ∂µf as a function of x is a one-form, ω̃. (More precisely,

ω̃
O→ {∂µf}.)
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Observation: Let {ωµ} be the matrix of a covector ω̃:

ω̃(~v) = ωµv
µ. (3)

Then under a change of basis in V inducing the coordinate change

vα = Λα
β v

β,

the coordinates (components) of ω̃ transform contragrediently:

ωα = Λβ
α ωβ .

(This is proved by observing in (3) the same cancellation as in (1)–(2).)

Note the superficial resemblance to the transformation law of the basis vec-
tors themselves:

~eα = Λβ
α ~eβ . (4)
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(Recall that the same algebra of cancellation assures that ~v = vα~eα = vβ~eβ.)
This is the origin of the term “covariant vectors”: such vectors transform along
with the basis vectors of V instead of contragrediently to them, as the vectors in V
itself do. However, at the less superficial level there are two important differences
between (3) and (4):

1. (4) is a relation among vectors, not numbers.

2. (4) relates different geometrical objects, not different coordinate representa-
tions of the same object, as (3) does.

Indeed, the terminology “covariant” and “contravariant” is nowadays regarded
as defective and obsolescent; nevertheless, I often find it useful.

Symmetry suggests the existence of bases for V* satisfying

Ẽα = Λα
βẼ

β.
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Sure enough, . . .

Definition: Given a basis
{

~eµ
}

for V, the dual basis for V* is defined by

Ẽµ(~eν) = δµν .

In other words, Ẽµ is the linear functional whose matrix in the unbarred coor-
dinate system is (0, 0, . . . , 1, 0, . . . ) with the 1 in the µth place, just as ~eν is the
vector whose matrix is















0
...
1
0
...















.

In still other words, Ẽµ is the covector that calculates the µth coordinate of the
vector it acts on:

~v = vν~eν ⇐⇒ Ẽµ(~v) = vµ.
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Conversely,
ω̃ = ωνẼ

ν ⇐⇒ ων = ω̃(~eν).

Note that to determine Ẽ2 (for instance), we need to know not only ~e2 but
also the other ~eµ :

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.......
.......
.......
.......
........
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
........
..

.........
..........
.........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.........
.............................

...........................

.................................................................................................................................................................................................................................................
......................

.....
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..............................

...........................

.......
......
.......
......
.......
......
........
.....
.......
......
.......
....
~v

v1 = Ẽ1(~v)→

v2 = Ẽ2(~v)ր

← v2 = 1

v1 = 1~e1

~e2

In this two-dimensional example, Ẽ2(~v) is the part of ~v in the direction of ~e2 —
projected along ~e1 . (As long as we consider only orthogonal bases in Euclidean
space and Lorentz frames in flat space-time, this remark is not relevant.)
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So far, the metric (indefinite inner product) has been irrelevant to the dis-
cussion — except for remarks like the previous sentence. However, if we have
a metric, we can use it to identify covectors with ordinary vectors. Classically,
this is called “raising and lowering indices”. Let us look at this correspondence
in three different ways:

Abstract (algebraic) version: Given ~u ∈ V, it determines a ω̃ ∈ V* by

ω̃(~v) ≡ ~u · ~v. (∗)

Conversely, given ω̃ ∈ V*, there is a unique ~u ∈ V such that (∗) holds. (I won’t
stop to prove the existence and uniqueness, since they will soon become obvious
from the other two versions.)

Calculational version: Let’s write out (∗):

ω̃(~v) = −u0v0 + u1v1 + u2v2 + u3v3.
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Thus

ω̃
O→ (−u0, u1, u2, u3),

or

ωα = ηαβu
β .

(Here we are assuming an orthonormal basis. Hence the only linear coordinate
transformations allowed are Lorentz transformations.) Conversely, given ω̃ with
matrix {ωµ}, the corresponding ~u has components





−ω0

ω1
...



 ,

or uα = ηαβωβ . (Recall that η in an orthonormal basis is numerically its own
inverse.)
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Geometrical version: (For simplicity I describe this in language appropri-
ate to Euclidean space (positive definite metric), not space-time.) ω̃ is represented
by a set of parallel, equally spaced surfaces of codimension 1 — that is, dimension
n − 1 ( = 3 in space-time). These are the level surfaces of the linear function
f(~x) such that ωµ = ∂µf (a constant covector field). (If we identify points in
space with vectors, then f(~x) is the same thing as ω̃(~x).) See the drawing on
p. 64. Note that a large ω̃ corresponds to closely spaced surfaces. If ~v is the
displacement between two points ~x, then

ω̃(~v) ≡ ω̃(∆~x) = ∆f

= number of surfaces pierced by ~v. Now ~u is the vector normal to the surfaces,
with length inversely proportional to their spacing. (It is essentially what is
called ∇f in vector calculus. However, “gradient” becomes ambiguous when
nonorthonormal bases are used. Please be satisfied today with a warning without
an explanation.)

50



To justify this picture we need the following fact:

Lemma: If ω̃ ∈ V* is not the zero functional, then the set of ~v ∈ V such
that ω̃(~v) = 0 has codimension 1. (Thus if the space is 3-dimensional, the level
surfaces are planes, for example.)

Proof: This is a special case of a fundamental theorem of linear algebra:

dim ker + dim ran = dim dom.

Since the range of ω̃ is a subspace of R that is not just the zero vector, it has
dimension 1. Therefore, the kernel of ω̃ has dimension n− 1.

II. General tensors

We have met these kinds of objects so far:
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(

1
0

)

Tangent vectors, ~v ∈ V.

vβ = Λβ
αv

α =
∂xβ

∂xα
vα.

(

0
1

)

Covectors, ω̃ ∈ V*; ω̃:V → R.

ωβ =
∂xα

∂xβ
ωα .

Interjection: V may be regarded as the space of linear functionals on V*:
~v:V*→ R. In the pairing or contraction of a vector and a covector, ω̃(~v) =
ωαv

α, either may be thought of as acting on the other.

(

0
0

)

Scalars, R (independent of frame).
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(

1
1

)

Operators, A
¯
:V → V. Such a linear operator is represented by a square

matrix:
(A
¯
~v)α = Aα

βv
β .

Under a change of frame (basis change), the matrix changes by a similarity
transformation:

A 7→ ΛAΛ−1; Aγ
δ =

∂xγ

∂xα
Aα

β
∂xβ

∂xδ
.

Thus the row index behaves like a tangent-vector index and the column
index behaves like a covector index. This should not be a surprise, because
the role (raison d’être) of the column index is to “absorb” the components
of the input vector, while the role of the row index is to give birth to the
output vector.

(

0
2

)

Bilinear forms, Q
¯
:V × V → R. The metric tensor η is an example of such a
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beast. A more elementary example is the matrix of a conic section:

Q
¯
(~x, ~x) = Qαβx

αxβ

= 4x2 − 2xy + y2 (for example).

Here both indices are designed to absorb an input vector, and hence both are
written as subscripts, and both acquire a transformation matrix of the “co”
type under a basis change (a “rotation of axes”, in the language of elementary
analytic geometry):

Q 7→
(

Λ−1
)t
QΛ−1; Qγ δ =

∂xα

∂xγ

∂xβ

∂xδ
Qαβ .

(When both input vectors are the same, the bilinear form is called a quadratic
form, Q

¯
:V → R (nonlinear).)

Remarks:
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1. In Euclidean space, if we stick to orthonormal bases (related by rotations),
there is no difference between the operator transformation law and the bi-
linear form one (because a rotation equals its own contragredient).

2. The metric η has a special property: Its components don’t change at all if
we stick to Lorentz transformations.

Warning: A bilinear or quadratic form is not the same as a “two-form”.
The matrix of a two-form (should you someday encounter one) is antisymmetric.
The matrix Q of a quadratic form is (by convention) symmetric. The matrix of
a generic bilinear form has no special symmetry.

Observation: A bilinear form can be regarded as a linear mapping from
V into V* (since supplying the second vector argument then produces a scalar).
Similarly, since V = V**, a linear operator can be thought of as another kind of
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bilinear form, one of the type

A
¯
:V*× V → R.

The second part of this observation generalizes to the official definition of a tensor:

General definition of tensors

1. A tensor of type
(

0
N

)

is a real-valued function of N vector arguments,

(~v1, ~v2, . . . , ~vN ) 7→ T (~v1, . . . , ~vN ),

which is linear in each argument when the others are held fixed (multilinear).
For example,

T (~u, (5~v1 + ~v2), ~w) = 5T (~u,~v1, ~w) + T (~u,~v2, ~w).
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2. A tensor of type
(

M
N

)

is a real-valued multilinear function of M covectors
and N vectors,

T (ω̃1, . . . , ω̃M , ~v1, . . . , ~vN ).

The components (a.k.a. coordinates, coefficients) of a tensor are equal to its
values on a basis (and its dual basis, in the case of a tensor of mixed type):

case
(

1
2

)

: Tµ
νρ ≡ T (Ẽµ, ~eν , ~eρ).

Equivalently, the components constitute the matrix by which the action of T
is calculated in terms of the components of its arguments (input vectors and
covectors):

T (ω̃, ~v, ~u) = Tµ
νρωµv

νuρ.

It follows that under a change of frame the components of T transform by ac-
quiring a transformation matrix attached to each index, of the contravariant or
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the covariant type depending on the position of the index:

Tα
βγ

=
∂xα

∂xµ

∂xν

∂xβ

∂xρ

∂xγ
Tµ
νρ .

Any tensor index can be raised or lowered by the metric; for example,

Tµνρ = ηµσT
σ
νρ .

Therefore, in relativity, where we always have a metric, the mixed (and the totally
contravariant) tensors are not really separate objects from the covariant tensors,
(

0
N

)

. In Euclidean space with only orthonormal bases, the numerical components
of tensors don’t even change when indices are raised or lowered! (This is the
reason why the entire distinction between contravariant and covariant vectors
or indices can be totally ignored in undergraduate linear algebra and physics
courses.)
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In applications in physics, differential geometry, etc., tensors sometimes arise
in their roles as multilinear functionals. (See, for instance, equation (4.14) defin-
ing the stress-energy-momentum tensor in terms of its action on two auxiliary
vectors.) After all, only scalars have an invariant meaning, so ultimately any
tensor in physics ought to appear together with other things that join with it
to make an invariant number. However, those “other things” don’t have to be
individual vectors and covectors. Several tensors may go together to make up a
scalar quantity, as in

RαβγδAαβAγδ .

In such a context the concept and the notation of tensors as multilinear functionals
fades into the background, and the tensor component transformation law, which
guarantees that the quantity is indeed a scalar, is more pertinent. In olden
times, tensors were simply defined as lists of numbers (generalized matrices) that
transformed in a certain way under changes of coordinate system, but that way
of thinking is definitely out of fashion today (even in physics departments).
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On the relation between inversion and index swapping

In special relativity, Schutz writes
{

Λβ
ᾱ

}

for the matrix of the coordinate
transformation inverse to the coordinate transformation

xᾱ = Λᾱ
β x

β . (∗)

However, one might want to use that same notation for the transpose of the
matrix obtained by raising and lowering the indices of the matrix in (∗):

Λᾱ
β = gᾱµ̄Λ

µ̄
νg

νβ .

Here
{

gαβ
}

and
{

gᾱβ̄
}

are the matrices of the metric of Minkowski space with
respect to the unbarred and barred coordinate system, respectively. (The coordi-
nate transformation (∗) is linear, but not necessarily a Lorentz transformation.)
Let us investigate whether these two interpretations of the symbol Λβ

ᾱ are con-
sistent.
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If the answer is yes, then (according to the first definition) δᾱγ̄ must equal

Λᾱ
βΛγ̄

β ≡ Λᾱ
β

(

gγ̄µ̄Λ
µ̄
νg

νβ
)

= gγ̄µ̄
(

Λµ̄
νg

νβΛᾱ
β

)

= gγ̄µ̄g
µ̄ᾱ

= δᾱγ̄ , Q.E.D.

(The first step uses the second definition, and the next-to-last step uses the trans-
formation law of a

(

2
0

)

tensor.)

In less ambiguous notation, what we have proved is that

(

Λ−1
)β

ᾱ = gᾱµ̄Λ
µ̄
νg

νβ . (†)

Note that if Λ is not a Lorentz transformation, then the barred and unbarred g
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matrices are not numerically equal; at most one of them in that case has the form

η =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






.

If Λ is Lorentz (so that the g matrices are the same) and the coordinates are with
respect to an orthogonal basis(so that indeed g = η), then (†) is the indefinite-
metric counterpart of the “inverse = transpose” characterization of an orthogonal
matrix in Euclidean space: The inverse of a Lorentz transformation equals the
transpose with the indices raised and lowered (by η). (In the Euclidean case, η
is replaced by δ and hence (†) reduces to

(

Λ−1
)β

ᾱ = Λᾱ
β ,

in which the up-down index position has no significance.) For a general linear
transformation, (†) may appear to offer a free lunch: How can we calculate an
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inverse matrix without the hard work of evaluating Cramer’s rule, or performing
a Gaussian elimination? The answer is that in the general case at least one of the
matrices

{

gᾱµ̄
}

and
{

gνβ
}

is nontrivial and somehow contains the information
about the inverse matrix.

Alternative argument: We can use the metric to map between vectors and
covectors. Since

vᾱ = Λᾱ
βv

β

is the transformation law for vectors, that for covectors must be

ṽµ̄ = gµ̄ᾱv
ᾱ

= gµ̄ᾱΛ
ᾱ
βv

β

= gµ̄ᾱΛ
ᾱ
βg

βν ṽν

≡ Λµ̄
ν ṽν
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according to the second definition. But the transformation matrix for covectors
is the transpose of the inverse of that for vectors — i.e.,

ṽµ̄ = Λν
µ̄ṽν

according to the first definition. Therefore, the definitions are consistent.

Tensor products

If ~v and ~u are in V, then ~v⊗~u is a
(

2
0

)

tensor defined in any of these equivalent
ways:

1. T = ~v ⊗ ~u has components Tµν = vµuν .

2. T :V*→ V is defined by

T (ω̃) = (~v ⊗ ~u)(ω̃) ≡ ω̃(~u)~v.
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3. T :V* × V* → R is a bilinear mapping, defined by absorbing two covector
arguments:

T (ω̃, ξ̃) ≡ ω̃(~v)ξ̃(~u).

4. Making use of the inner product, we can write for any ~w ∈ V,

(~v ⊗ ~u)(~w) ≡ (~u · ~w)~v.

(Students of quantum mechanics may recognize the Hilbert-space analogue
of this construction under the notation |v〉〈u|.)

The tensor product is also called outer product. (That’s why the scalar
product is called “inner”.) The tensor product is itself bilinear in its factors:

(~v1 + z~v2)⊗ ~u = ~v1 ⊗ ~u+ z ~v2 ⊗ ~u.
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We can do similar things with other kinds of tensors. For instance, ~v ⊗ ω̃ is
a
(

1
1

)

tensor (an operator T :V → V) with defining equation

(~v ⊗ ω̃)(~u) ≡ ω̃(~u)~v.

(One can argue that this is an even closer analogue of the quantum-mechanical
|v〉〈ω̃|.)

A standard basis for each tensor space: Let {~eµ} ≡ O be a basis for
V. Then {~eµ ⊗ ~eν} is a basis for the

(

2
0

)

tensors:

T = Tµν~eµ ⊗ ~eν ⇐⇒ T
O→ {Tµν} ⇐⇒ Tµν = T (Ẽµ, Ẽν).

Obviously we can do the same for the higher ranks of tensors. Similarly, if A
¯
is

a
(

1
1

)

tensor, then

A
¯
= Aµ

ν ~eµ ⊗ Ẽν .
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Each ~eµ ⊗ Ẽν is represented by an “elementary matrix” like





0 1 0
0 0 0
0 0 0



 ,

with the 1 in the µth row and νth column.

The matrix of ~v ⊗ ω̃ itself is of the type





v1ω1 v1ω2 v1ω3

v2ω1 v2ω2 v2ω3

v3ω1 v3ω2 v3ω3



 .

You can quickly check that this implements the operation (~v ⊗ ω̃)(~u) = ω̃(~u)~v.
Similarly, ~v⊗ ~u has a matrix whose elements are the products of the components
of the two vectors, though the column index is no longer “down” in that case.
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We have seen that every
(

2
0

)

tensor is a linear combination of tensor products:
T = Tµν~eµ ⊗ ~eν . In general, of course, this expansion has more than one term.
Even when it does, the tensor may factor into a single tensor product of vectors
that are not members of the basis:

T = (~e1 + ~e2)⊗ (2~e1 − 3~e2),

for instance. (You can use bilinearity to convert this to a linear combination
of the standard basis vectors, or vice versa.) However, it is not true that every
tensor factors in this way:

T = (~e0 ⊗ ~e1) + (~e2 ⊗ ~e3),

for example. (Indeed, if an operator factors, then it has rank 1; this makes it a
rather special case. Recall that a rank-1 operator has a one-dimensional range;
the range of ~v⊗ ~u comprises the scalar multiples of ~v. This meaning of “rank” is
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completely different from the previous one referring to the number of indices of
the tensor.)

Symmetries of tensors are very important. Be sure to read the introductory
discussion on pp. 67–68.

Differentiation of tensor fields (in flat space)

Consider a parametrized curve, xν(τ). We can define the derivative of a
tensor T (~x) along the curve by

dT

dτ
= lim

∆τ→0

T (τ +∆τ)− T (τ)

∆τ
,

where T (τ) is really shorthand for T (~x(τ)). (In curved space this will need mod-
ification, because the tensors at two different points in space can’t be subtracted
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without further ado.) If we use a fixed basis (the same basis vectors for the
tangent space at every point), then the derivative affects only the components:

dT

dτ
=

(

dTαβ

dτ

)

~eα ⊗ ~eβ .

If ~U is the tangent vector to the curve, then

dTαβ

dτ
=

∂Tαβ

∂xγ

dxγ

dτ
≡ Tαβ

,γ U
γ .

The components {Tαβ
,γ} make up a

(

2
1

)

tensor, the gradient of T :

∇T = Tαβ
,γ ~eα ⊗ ~eβ ⊗ Ẽγ .

Thus

Tαβ
,γ U

γ O← dT

dτ
≡ ∇T (~U) ≡ ∇~UT.
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Also, the inner product makes possible the convenient notation

dT

dτ
≡ ~U · ∇T.
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Stress Tensors (Chapter 4)

This will be a very quick tour of the most important parts of Chapter 4.

The stress tensor in relativistic physics is also called energy-momentum ten-
sor.

The central point of general relativity is that matter is the source of gravity,
just as charge is the source of electromagnetism. Because gravity is described in
the theory by tensors (metric and curvature), the source needs to be a (two-index)
tensor. (E&M is a vector theory, and its source 4-vector is built of the charge
and the current 3-vector.)

The relation of the stress tensor to more conventional physical quantities is
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T 00 = ρ = energy density,

T 0i = energy flux,

T i0 = momentum density,

(actually, T i0 = T 0i in most theories),

T ij = momentum flux = stress,

in particular,

T ii = p = pressure.

In terms of the tensor as a bilinear functional, we have (Schutz (4.14))

Tαβ = T(Ẽα, Ẽβ) ≡ T(d̃xα, d̃xβ)

= flux of α-momentum across a surface of constant β,

with 0-momentum interpreted as energy.
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In standard vector-calculus terms,

d̃t = dx1 dx2 dx3 = ñ dS (for example).

Now consider a cloud of particles all moving at the same velocity. There is
a rest Lorentz frame where the speed is 0, and the temperature of this dust is 0.
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More generally, the temperature will be positive and the particles moving in
random directions. (This includes photons as an extreme case.) Even in this
case there is a momentarily comoving rest frame (MCRF) for the average motion
inside a small space-time element.

Schutz says that in the MCRF, T 0j may still be nonzero in a time-dependent
situation, because of heat conduction. The MCRF is not defined by diagonalizing
Tαβ, but by the physical requirement that the particles have no total momentum.

The conservation law: Tαβ
,β ≡ ∂βT

αβ = 0.

Using Gauss’s theorem, this can be integrated to give conservation of total energy
and total momentum.
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A hierarchy of matter sources (general to special)

1. Generic (T βα = Tαβ; Tαβ
,β = 0)

2. Fluid (no rigidity ⇒ T ij small if i 6= j)

3. Perfect fluid (no viscosity; no heat conduction in MCRF)

4. Dust (massive particles; zero temperature)

For perfect fluid, T is diagonal in a MCRF, and all pressures are equal:

T =







ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p






≡ diag(ρ, p, p, p).
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In any frame,
T = (ρ+ p) ~U ⊗ ~U + pg−1

— because g−1 = diag(−1, 1, 1, 1) in any Lorentz frame, and ~U ⊗ ~U =
diag(1, 0, 0, 0) in MCRF.

In the dust case, p = 0 and T = ~p⊗ ~N = mn ~U ⊗ ~U . Here

~p = m~U = particle momentum (m = mass),

~N = n~U = particle number flux (n = number density).
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On the Relation of Gravitation to Curvature (Section 5.1)

Gravitation forces major modifications to special relativity. Schutz presents
the following argument to show that, so to speak, a rest frame is not really a rest
frame:

1. Energy conservation (no perpetual motion) implies that photons possess
gravitational potential energy: E′ ≈ (1− gh)E.

2. E = hν implies that photons climbing in a gravitational field are redshifted.

3. Time-translation invariance of photon trajectories plus the redshift imply
that a frame at rest in a gravitational field is not inertial!

As Schutz indicates, at least the first two of these arguments can be traced back to
Einstein. However, some historical common sense indicates that neither Einstein
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nor his readers in 1907–1912 could have assumed E = hν (quantum theory) in
order to prove the need for something like general relativity. A. Pais, ‘Subtle is
the Lord . . . ’ (Oxford, 1982), Chapters 9 and 11, recounts what Einstein actually
wrote.

1. Einstein gave separate arguments for the energy change and the frequency
change of photons in a gravitational field (or accelerated frame). He did not
mention E = hν, but as Pais says, “it cannot have slipped his mind.”

2. The principle of equivalence. Consider the two famous scenarios:
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I II

A B A B

I. Observer A is in a space station (freely falling). Observer B is passing by in
a rocket ship with the rockets turned on (accelerating). A’s frame is inertial;
he is weightless. B’s frame is accelerated; the floor presses up against his feet
as if he has weight.

II. Observer A is in an elevator whose cable has just broken. Observer B is
standing on a floor of the building next to the elevator’s instantaneous posi-
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tion. A’s frame is inertial (freely falling). B’s frame is at rest on the earth;
he is heavy.

In 1907 Einstein gave an inductive argument: Since gravity affects all bodies
equally, these situations are operationally indistinguishable by experiments done
inside the labs. A’s frame is inertial in both cases, and he is weightless. B cannot
distinguish the effect of acceleration from the gravity of the earth.

In 1911 Einstein turned this around into a deductive argument: A theory in
which these two scenarios are indistinguishable by internal experiments explains
from first principles why gravity affects all bodies equally.

3. Einstein’s argument for the frequency shift is just a modification of the
Doppler effect argument on p. 115 of Schutz. Summarizing from Pais: Let a
frame Σ start coincident with a frame S0 and have acceleration a. Let light be
emitted at point x = h in S0 with frequency ν2 . The light reaches the origin
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of Σ at time h (plus a correction of order O(h2)), when Σ has velocity ah. It
therefore has frequency ν1 = ν2(1 + ah) to lowest order (cf. Sec. 2.7). Now
identify Σ with the “heavy observer” in the previous discussion. Then a = g, and
ah = Φ, the gravitational potential difference between the emission and detection
points. Extrapolated to nonuniform gravitational fields, ν1 = ν2(1 + Φ) predicts
the redshift of light from dense stars, which is observed!

4. As remarked, Einstein wrote two papers on these matters, in 1907 and
1911. (Note: Full general relativity did not appear till 1915.) As far as I can
tell from Pais, neither contains the notorious photon perpetual-motion machine!
Both papers are concerned with four overlapping issues:

a) the equivalence principle;

b) the gravitational redshift;
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c) the gravitational potential energy of light and of other energy;

d) the bending of light by a gravitational field (leading to a famous observational
test in 1919).

5. Outline of first paper:

1. Equivalence principle by the inductive argument.

2. Consider a uniformly accelerated frame Σ. Compare with comoving inertial
frames at two times. Conclude that clocks at different points in Σ run at
different rates. Apply equivalence principle to get different rates at different
heights in a gravitational field, and hence a redshift.

3. Conclude that c depends on x in Maxwell’s equations. Light bending fol-
lows. Also, energy conservation in Σ implies that any energy generates an
additional position-dependent gravitational energy.

83



6. Outline of second paper:

1. Equivalence principle by the deductive argument.

2. Redshift by the Doppler argument; gravitational energy of light by a similar
special-relativity argument. [Note: I think that Pais has misread Einstein at
one point. He seems to confuse the man in the space station with the man
in the building.]

3. Resolve an apparent discrepancy by accepting the uneven rate of clocks.

4. Hence deduce the nonconstant c and the light bending. (Here Maxwell’s
equations have been replaced by general physical arguments.)
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Curvilinear Coordinates in Flat Space (Chapter 5)

Random remarks on Sec. 5.2

Most of the material in this section has been covered either in earlier courses
or in my lectures on Chapter 3.

Invertibility and nonvanishing Jacobian. These conditions (on a co-
ordinate transformation) are closely related but not synonymous. The polar
coordinate map on a region such as

1 < r < 2, −π < θ < 2π

(wrapping around, but avoiding, the origin) has nonvanishing Jacobian every-
where, but it is not one-to-one. The transformation

ξ = x, η = y3
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is invertible, but its Jacobian vanishes at y = 0. (This causes the inverse to be
nonsmooth.)

The distinction between vector and covector components of a gra-
dient, and the components with respect to an ON basis. The discussions
on p. 124 and in Sec. 5.5 finish up something I mentioned briefly before. The
gradient of a scalar function is fundamentally a one-form, but it can be converted
into a vector field by the metric:

(d̃φ)β ≡ φ,β ; (~dφ)α ≡ gαβφ,β .

For instance, in polar coordinates

(~dφ)θ =
1

r2
φ,θ (but (~dφ)r = φ,r).

What classical vector analysis books look at is neither of these, but rather the
components with respect to a basis of unit vectors. Refer here to Fig. 5.5, to see
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how the normalization of the basis vectors (in the θ direction, at least) that are
directly associated with the coordinate system varies with r. Thus we have

θ̂ =
1

r
~eθ = r Ẽθ ≡ r dθ,

where

~eθ =

{

dxµ

dθ

}

has norm proportional to r,

Ẽθ =

{

∂θ

∂xµ

}

has norm proportional to
1

r
.

Abandoning unit vectors in favor of basis vectors that scale with the coor-
dinates may seem like a step backwards — a retreat to coordinates instead of
a machinery adapted to the intrinsic geometry of the situation. However, the
standard coordinate bases for vectors and covectors have some advantages:
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1. They remain meaningful when there is no metric to define “unit vector”.

2. They are calculationally easy to work with; we need not constantly shuffle
around the square roots of inner products.

3. If a basis is not orthogonal, scaling its members to unit length does not
accomplish much.

In advanced work it is common to use a field of orthonormal bases unrelated
to any coordinate system. This makes gravitational theories look like gauge
theories. It is sometimes called “Cartan’s repère mobile” (moving frame). Schutz
and I prefer to stick to coordinate bases, at least for purposes of an elementary
course.
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Covariant derivatives and Christoffel symbols

Curvilinear-coordinate basis vectors depend on position, hence have nonzero
derivatives. Therefore, differentiating the components of a vector field doesn’t
produce the components of the derivative, in general! The “true” derivative has
the components

∂~v

∂xβ

O→ vα;β = vα,β + vµΓα
µβ , (∗)

where the last term can be read as a matrix, labeled by β, with indices α and
µ, acting on ~v. The Γ terms are the contribution of the derivatives of the basis
vectors:

∂~eα
∂xβ

= Γµ
αβ~eµ .

(From this (∗) follows by the product rule.)

Equation (∗) is not tensorial, because the index β is fixed. However, the
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numbers vα;β are the components of a
(

1
1

)

tensor, ∇v. (∗) results upon choosing
the contravariant vector argument of ∇v to be the coordinate basis vector in the
β direction.

In flat space (∗) is derived by demanding that ∇v be a tensor and that it
reduce in Cartesian coordinates to the standard matrix of partial derivatives of ~v.
In curved space (∗) will be a definition of covariant differentiation. (Here “covari-
ant” is not meant in distinction from “contravariant”, but rather in the sense of
“tensorial” or “geometrically intrinsic”, as opposed to “coordinate-dependent”.)
To define a covariant derivative operation, we need a set of quantities

{

Γα
βγ

}

(Christoffel symbols) with suitable properties. Whenever there is a metric tensor
in the problem, there is a natural candidate for Γ, as we’ll see.

To define a derivative for one-forms, we use the fact that ωαv
α is a scalar —

so we know what its derivative is — and we require that the product rule hold:

(ωαv
α);β ≡ ∇β(ωαv

α) = ωα;βv
α + ωαv

α
;β .
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But

(ωαv
α);β = (ωαv

α),β = ωα,βv
α + ωαv

α
,β .

Since

vα;β = vα,β + vµΓα
µβ ,

it follows that

ωα;β = ωα,β − ωµΓ
µ
αβ .

These two formulas are easy to remember (given that indices must contract in
pairs) if you learn the mnemonic “plUs – Up”.

By a similar argument one arrives at a formula for the covariant derivative
of any kind of tensor. For example,

∇βB
µ
ν = Bµ

ν,β +Bα
νΓ

µ
αβ −Bµ

αΓ
α
νβ .
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Metric compatibility and [lack of] torsion

By specializing the tensor equations to Cartesian coordinates, Schutz verifies
in flat space:

(1) gαβ;µ = 0 (i.e., ∇g = 0).

(2) Γµ
αβ = Γµ

βα .

(3) Γµ
αβ =

1

2
gµγ
(

gγβ,α + gαγ,β − gαβ,γ
)

.

Theorem: (1) and (2) imply (3), for any metric (not necessarily flat). Thus,
given a metric tensor (symmetric, invertible), there is a unique connection (covari-
ant derivative) that is both metric-compatible (1) and torsion-free (2). (There
are infinitely many other connections that violate one or the other of the two
conditions.)
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Metric compatibility (1) guarantees that the metric doesn’t interfere with
differentiation:

∇γ

(

gαβv
β
)

= gαβ∇γv
β,

for instance. I.e., differentiating ~v is equivalent to differentiating the correspond-
ing one-form, ṽ.

We will return briefly to the possibility of torsion (nonsymmetric Christoffel
symbols) later.

Transformation properties of the connection

Γ is not a tensor! Under a (nonlinear) change of coordinates, it picks up an
inhomogeneous term:

Γµ′

α′β′ =
∂xµ′

∂xν

∂xγ

∂xα′

∂xδ

∂xβ′
Γν

γδ −
∂xγ

∂xα′

∂xδ

∂xβ′

∂2xµ′

∂xγ∂xδ
.
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(This formula is seldom used in practice; its main role is just to make the point
that the transformation rule is unusual and a mess. We will find better ways to
calculate Christoffel symbols in a new coordinate system.) On the other hand,

1. For fixed β, {Γα
βγ} is a

(

1
1

)

tensor with respect to the other two indices
(namely, the tensor ∇~eβ).

2. ∇~v O→ {∂αvβ + Γβ
µαv

µ} is a
(

1
1

)

tensor, although neither term by itself is a
tensor. (Indeed, that’s the whole point of covariant differentiation.)

Tensor Calculus in Hyperbolic Coordinates

We shall do for hyperbolic coordinates in two-dimensional space-time all the
things that Schutz does for polar coodinates in two-dimensional Euclidean space.1

1 Thanks to Charlie Jessup and Alex Cook for taking notes on my lectures in Fall
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The coordinate transformation
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← σ = constant

տτ = constant

2005.
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Introduce the coordinates (τ , σ) by

t = σ sinh τ,

x = σ cosh τ .

Then
t

x
= tanh τ , −t2 + x2 = σ2. (1)

The curve τ = const. is a straight line through the origin. The curve σ = const.
is a hyperbola. As σ varies from 0 to ∞ and τ varies from −∞ to ∞ (endpoints
not included), the region

x > 0, −x < t < x

is covered one-to-one. In some ways σ is analogous to r and τ is analogous to θ,
but geometrically there are some important differences.
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From Exercises 2.21 and 2.19 we recognize that the hyperbola σ = const. is
the path of a uniformly accelerated body with acceleration 1/σ. (The parameter
τ is not the proper time but is proportional to it with a scaling that depends
on σ.)

From Exercises 1.18 and 1.19 we see that translation in τ (moving the points
(τ , σ) to the points (τ + τ0, σ)) is a Lorentz transformation (with velocity param-
eter τ0 ).

Let unprimed indices refer to the inertial coordinates (t, x) and primed in-
dices refer to the hyperbolic coordinates. The equations of small increments are

∆t =
∂t

∂τ
∆τ +

∂t

∂σ
∆σ = σ cosh τ ∆τ + sinh τ ∆σ,

∆x = σ sinh τ ∆τ + cosh τ ∆σ.
(2)
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Therefore, the matrix of transformation of (tangent or contravariant) vectors is

V β = Λβ
α′V α′

, Λβ
α′ =

(

σ cosh τ sinh τ
σ sinh τ cosh τ

)

. (3)

Inverting this matrix, we have

V α′

= Λα′

βV
β, Λα′

β =

(

1
σ
cosh τ − 1

σ
sinh τ

− sinh τ cosh τ

)

. (4)

(Alternatively, you could find from (1) the formula for the increments (∆τ ,∆σ)
in terms of (∆t,∆x). But in that case the coefficients would initially come out in
terms of the inertial coordinates, not the hyperbolic ones. These formulas would
be analogous to (5.4), while (4) is an instance of (5.8–9).)

If you have the old edition of Schutz, be warned that the material on p. 128 has
been greatly improved in the new edition, where it appears on pp. 119–120.
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Basis vectors and basis one-forms

Following p. 122 (new edition) we write the transformation of basis vectors

~eα′ = Λβ
α′~eβ ,

~eτ = σ cosh τ ~et + σ sinh τ ~ex ,

~eσ = sinh τ ~et + cosh τ ~ex ;
(5)

and the transformation of basis covectors

Ẽα′

= Λα′

βẼ
β ,

which is now written in a new way convenient for coordinate systems,

d̃τ =
1

σ
cosh τ d̃t− 1

σ
sinh τ d̃x ,

d̃σ = − sinh τ d̃t+ cosh τ d̃x .
(6)
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To check that the notation is consistent, note that (because our two Λ matrices
are inverses of each other)

d̃ξα
′

(~eβ′) = δα
′

β′ ≡ Ẽα′

(~eβ′).

Note that equations (6) agree with the “classical” formulas for the differentials
of the curvilinear coordinates as scalar functions on the plane; it follows that, for
example, d̃τ(~v) is (to first order) the change in τ under a displacement from ~x to
~x+ ~v. Note also that the analog of (6) in the reverse direction is simply (2) with
∆ replaced by d̃.

The metric tensor

Method 1: By definitions (see (5.30))

gα′β′ = g(~eα′ , ~eβ′) = ~eα′ · ~eβ′ .
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So

gττ = −σ2, gσσ = 1, gτσ = gστ = 0.

These facts are written together as

ds2 = −σ2 dτ2 + dσ2,

or

g
O′

→
(

−σ2 0
0 1

)

.

The inverse matrix, {gα′β′}, is
(

− 1
σ2 0
0 1

)

.
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Method 2: In inertial coordinates

g
O→
(

−1 0
0 1

)

.

Now use the
(

0
2

)

tensor transformation law

gα′β′ = Λγ
α′Λδ

β′gγδ ,

which in matrix notation is
(

gττ gτσ
gστ gσσ

)

=

(

Λt
τ Λt

σ

Λx
τ Λx

σ

)t(−1 0
0 1

)(

Λt
τ Λt

σ

Λx
τ Λx

σ,

)

which, with (3), gives the result.

This calculation, while conceptually simple, is cumbersome and subject to
error in the index conventions. Fortunately, there is a streamlined, almost auto-
matic, version of it:
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Method 3: In the equation ds2 = −dt2 + dx2, write out the terms via (2)
and simplify, treating the differentials as if they were numbers:

ds2 = −(σ cosh τ dτ + sinh τ dσ)2 + (σ sinh τ dτ + cosh τ dσ.)2

= −σ2 dτ2 + dσ2.

Christoffel symbols

A generic vector field can be written

~v = vα
′

~eα′ .

If we want to calculate the derivative of ~v with respect to τ , say, we must take
into account that the basis vectors {~eα′} depend on τ . Therefore, the formula for
such a derivative in terms of components and coordinates contains extra terms,
with coefficients called Christoffel symbols. [See (∗) and the next equation several
pages ago, or (5.43,46,48,50) in the book.]
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The following argument shows the most elementary and instructive way of
calculating Christoffel symbols for curvilinear coordinates in flat space. Once we
get into curved space we won’t have inertial coordinates to fall back upon, so
other methods of getting Christoffel symbols will need to be developed.

Differentiate (5) to get

∂~eτ
∂τ

= σ sinh τ ~et + σ cosh τ ~ex = σ~eσ ,

∂~eτ
∂σ

= cosh τ ~et + sinh τ ~ex =
1

σ
~eτ ,

∂~eσ
∂τ

= cosh τ ~et + sinh τ ~ex =
1

σ
~eτ ,

∂~eσ
∂σ

= 0.

Since by definition
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∂~eα′

∂xβ′
= Γµ′

α′β′~eµ′ ,

we can read off the Christoffel symbols for the coordinate system (τ , σ):

Γσ
ττ = σ, Γτ

ττ = 0,

Γτ
τσ = Γτ

στ =
1

σ
,

Γσ
τσ = Γσ

στ = 0,

Γτ
σσ = 0, Γσ

σσ = 0.

Later we will see that the Christoffel symbol is necessarily symmetric in its
subscripts, so in dimension d the number of independent Christoffel symbols is

d (superscripts) × d(d+ 1)

2
(symmetric subscript pairs) = 1

2d
2(d+ 1).
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For d = 2, 3, 4 we get 6, 18, 40 respectively. In particular cases there will be
geometrical symmetries that make other coefficients equal, make some of them
zero, etc.
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Manifolds and Curvature (Chapter 6)

Random remarks on Secs. 6.1–3

My lectures on Chap. 6 will fall into two parts. First, I assume (as usual)
that you are reading the book, and I supply a few clarifying remarks. In studying
this chapter you should pay close attention to the valuable summaries on pp. 143
and 165.

Second, I will talk in more depth about selected topics where I feel I have
something special to say. Some of these may be postponed until after we discuss
Chapters 7 and 8, so that you won’t be delayed in your reading.

Manifolds. In essence, an n-dimensional manifold is a set in which a point
can be specified by n numbers (coordinates). We require that locally the manifold
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“looks like” Rn in the sense that any function on the manifold is continuous,
differentiable, etc. if and only if it has the corresponding property as a function
of the coordinates. (Technically, we require that any two coordinate systems are
related to each other in their region of overlap (if any) by a smooth (infinitely
differentiable) function, and then we define a function on the manifold to be, for
instance, once differentiable if it is once differentiable as a function of any (hence
every) coordinate set.) This is a weaker property than the statement that the
manifold locally “looks like” Euclidean n-dimensional space. That requires not
only a differentiable structure, but also a metric to define angles and distances. (In
my opinion, Schutz’s example of a cone is an example of a nonsmooth Riemannian
metric, or of a nonsmooth embedding into a higher-dimensional space, not of a
nonsmooth manifold.)

Globally, the topology of the manifold may be different from that of Rn. In
practice, this means that no single coordinate chart can cover the whole space.
However, frequently one uses coordinates that cover all but a lower-dimensional
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singular set, and can even be extended to that set in a discontinuous way. An
elementary example (taught in grade-school geography) is the sphere. The usual
system of latitude and longitude angles is singular at the Poles and necessarily
discontinuous along some line joining them (the International Date Line being
chosen by convention). Pilots flying near the North Pole use charts based on a
local Cartesian grid, not latitude and longitude (since “all directions are South”
is a useless statement).

Donaldson’s Theorem. In the early 1980s it was discovered that R4 (and
no other Rn) admits two inequivalent differentiable structures. Apparently, no-
body quite understands intuitively what this means. The proof appeals to gauge
field theories. See Science 217, 432–433 (July 1982).

Metric terminology. Traditionally, physicists and mathematicians have
used different terms to denote metrics of various signature types. Also relevant
here is the term used for the type of partial differential equation associated with
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a metric via gµν∂µ∂ν + · · ·.

Physics Math (geometry) PDE

Euclidean Riemannian elliptic
Riemannian semi-Riemannian either
Riemannian with Lorentzian hyperbolic

indefinite metric (pseudo-Riemannian)

In a Lorentzian space Schutz writes

g ≡ det
(

gµν
)

, dV =
√−g d4x.

Some other authors write

g ≡ |det
(

gµν
)

|, dV =
√
g d4x.
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Local Flatness Theorem: At any one point P, we can choose coordinates
so that

P O→ {0, 0, 0, 0} and gαβ(x) = ηαβ +O(x2).

That is,

gαβ(P) = ηαβ ≡







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






, gαβ,γ(P) = 0.

From the last equation, Γα
βγ(P) = 0 follows.

Schutz gives an ugly proof based on Taylor expansions and counting. The
key step is that the derivative condition imposes 40 equations, while there are 40
unknowns (degrees of freedom) in the first derivatives of the coordinate transfor-
mation we are seeking. Schutz does not check that this square linear system is
nonsingular, but by looking closely at (6.26) one can see that its kernel is indeed
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zero. (Consider separately the four cases: all indices equal, all distinct, ν′ = γ′,
ν′ = µ′.)

I will present a more interesting proof of this theorem later, after we study
geodesics.

More numerology. Further counting on p. 150 shows that if n = 4, there
are 20 independent true degrees of freedom in the second derivatives of the metric
(i.e., in the curvature). Out of curiosity, what happens if n = 2 or 3? The key
fact used (implicit in the discussion on p. 149) is





The number of independent components of a
symmetric

(

0
3

)

tensor (or other 3-index quan-
tity) in dimension n



 =
n(n+ 1)(n+ 2)

3!
.

The generalization to p symmetric indices is
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(n+ p− 1)!

(n− 1)!p!
=

(

n+ p− 1

p

)

.

(This is the same as the number of ways to put p bosons into n quantum states.)

Proof: A component (of a symmetric tensor) is labelled by telling how many
indices take each value (or how many particles are in each state). So, count all
permutations of p things and the n − 1 dividers that cut them into equivalence
classes labelled by the possible values. Then permute the members of each class
among themselves and divide, to remove duplications.

Now, it follows that

Λα′

λ,µν =
∂3xα′

∂xλ ∂xµ ∂xν

has n2(n+1)(n+2)/6 independent components. Also, gαβ,µν has [n(n+1)/2]2 =
n2(n+1)2/4. The excess of the latter over the former is the number of components
in the curvature.
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n g Λ R

1 1 1 0
2 9 8 1
3 36 30 6
4 100 80 20
5 225 175 50

The Levi-Civita connection. We define covariant differentiation by the
condition that it reduces at a point P to ordinary differentiation in locally inertial
coordinates at P (i.e., the coordinates constructed in the local flatness theorem).
This amounts to saying that the Christoffel symbols, hence (~eα);β , vanish at P
in that system. This definition implies

i) no torsion (Γγ
αβ = Γγ

βα);

ii) metric compatibility (∇g = 0). Therefore, as in flat space, Γ is uniquely
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determined as

Γµ
αβ =

1

2
gµγ
(

gγβ,α + gαγ,β − gαβ,γ
)

.

Note that other connections, without one or both of these properties, are possible.
(Schutz’s argument that physics requires (i) is not convincing.)

Integration over surfaces; covariant version of Gauss’s theorem.
The notation in (6.43–45) is ambiguous. I understand nα and d3S to be the
“apparent” unit normal and volume element in the chart, so that the classical
Gauss theorem can be applied in R4. The implication is that the combination
nα
√−g d3S is independent of chart. (Whenever we introduce a coordinate sys-

tem into a Riemannian manifold, there are two Riemannian geometries in the
problem: the “true” one, and the (rather arbitrary) flat one induced by the co-
ordinate system, which (gratuitously) identifies part of the manifold with part of
a Euclidean space.)
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Consider a chart such that x0 = 0 is the 3-surface (not necessarily timelike)
and lines of constant (x1, x2, x3) are initially normal to the 3-surface. (All this is
local and patched together later.) Then

√−g =
√

|g00|
√

(3)g,

and
Nα ≡ nα

√

|g00| = (
√

|g00|, 0, 0, 0)
is a unit normal 1-form in the true geometry (since g0i = 0 and g00(N0)

2 = −1).
(For simplicity I ignore the possibility of a null 3-surface.) Thus nα

√−g d3S =

Nα

√

(3)g d3S is an intrinsic geometric object, because
√

(3)g d3S is the Rieman-
nian volume on the 3-surface as a manifold in its own right. (Note that in these
coordinates d3S = dx1 dx2 dx3.)

Let us relate this discussion to the treatment of surface integrals in traditional
vector calculus. There, an “element of surface area”, denoted perhaps by dσ, is
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used to define integrals of scalar functions and flux integrals of vector fields. (We
have now dropped by one dimension from the setting of the previous discussion:
The surface in question is 2-dimensional and the embedding space is Euclidean
3-space.) The notion of area of a surface clearly depends on the metric of space,
hence, ultimately, on the dot product in R3. However, I claim that the flux of
a vector field through a surface is independent of the dot product. Such a flux
integral is traditionally expressed in terms of a “vectorial element of surface”,
n̂ dσ, where n̂ is a unit vector normal to the surface. Note that both “unit” and
“normal” are defined in terms of the dot product! The point is that, nevertheless,
n̂ dσ really should be thought of as a metric-independent unit, although the two
factors are metric-dependent.

One can show that dσ =
√

(2)g d2S in the notation of the previous discussion.
Therefore, n̂ is the same as the Nα there, vectors being identified with one-
forms via the Euclidean metric in an orthonormal frame, where index-raising is
numerically trivial.
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To demonstrate the claim, let (u1, u2) be parameters on a surface in Eu-
clidean R3. Then

(1) A vector normal to the surface is ∂~x
∂u1 × ∂~x

∂u2 (since the factors are tangent to

the surface). One divides by
∥

∥

∂~x
∂u1 × ∂~x

∂u2

∥

∥ to get a unit normal, n̂.

(2) The covariant surface area element is

d2σ =
√

(2)g du1 du2 =

∥

∥

∥

∥

∂~x

∂u1
× ∂~x

∂u2

∥

∥

∥

∥

du1 du2

(the area of an infinitesimal parallelogram).

Therefore, the two normalization factors cancel and one gets

n̂ d2σ =

(

∂~x

∂u1
× ∂~x

∂u2

)

du1 du2.
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This is formula makes no reference to the metric (dot product), though
∥

∥

∂~x
∂u1 × ∂~x

∂u2

∥

∥ does. This explains the disappearance of the concept “unit”. The
disappearance of the concept “normal” from the definition is explained by the
replacement of the normal vector n̂ by the one-form Nα , which is intrinsically
associated with the surface without the mediation of a metric.

More generally, the formalism of differential forms cuts through all the
metric-dependent and dimension-dependent mess to give a unified theory of in-
tegration over submanifolds. The things naturally integrated over p-dimensional
submanifolds are p-forms. For example,

vα nα

√−g d3S = vαNα

√

(3)g d3S

is a 3-form constructed out of a vector field in a covariant (chart-independent,
“natural”) way; its integral over a surface gives a scalar. Chapter 4 of Schutz’s
gray book gives an excellent introduction to integration of forms.
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Geodesics and related variational principles

Parallel transport. We say that a vector field ~V defined on a curve is
parallel-transported through P if it moves through P as if instantaneously con-
stant in the local inertial frame. This is as close as we can come to requiring ~V
to be “locally constant” — in particular, in curved space we can’t require such a
condition throughout a whole region, only on individual curves. More precisely,
if ~U ≡ d~x

dλ is the tangent vector to the curve, then ~V is parallel-transported along
the curve if and only if

0 =
d~V

dλ
≡ ~U · ∇~V

O→ {UβV α
;β}.

In coordinates, this is

0 = Uβ ∂V α

∂xβ
+ UβΓα

γβV
γ
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(where the first term is the ordinary directional derivative of the components,

d(V α)/dλ). This is a first-order, linear ordinary differential equation that ~V

satisfies. Note that only derivatives of V α along the curve count. So ~U · ∇~V =

∇~U
~V is defined even if ~V is defined only on the curve — although ∇~V

O→ {V α
;β}

isn’t!

More generally,

d(V α)

dλ
+ Γα

γβU
βV γ ≡

(

d~V

dλ

)α

is called the absolute derivative of ~V (λ), when the latter is a vector-valued func-

tion defined on the curve whose tangent is ~U(λ). Schutz routinely writes UβV α
;β

for the absolute derivative even when ~V is undefined off the curve (e.g., when ~V

is the velocity or momentum of a particle). This can be justified. (If ~V = ~V (x)
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is the velocity field of a fluid, it’s literally OK.) (Many books write D~V
dλ

, instead

of d~V
dλ , for the absolute derivative, to emphasize that it’s a covariantly defined

quantity, not just the collection of derivatives of the component functions.)

Geodesic equation. If the tangent vector of a curve is parallel-transported
along the curve itself, then the curve is as close as we can come in curved space
to a straight line. Written out, this says

0 = (~V · ∇~V )α = V β ∂V α

∂xβ
+ Γα

βγV
βV γ ,

or

0 =
d2xα

dλ2 + Γα
βγ

(

x(λ)
) dxβ

dλ

dxγ

dλ
. (†)

This is a second-order, nonlinear ODE for x(λ).

Reparametrization. If (and only if) φ = f(λ) and φ 6= aλ+ b with a and
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b constant, then x as a function of φ does not satisfy the geodesic equation. In
what sense is the tangent vector not parallel-transported in this situation?

(Answer: Normalization is not constant.)

A “good” reparametrization (φ does equal aλ+ b) is called affine.

Theorem (cf. Ex. 13): If x(λ) is a geodesic (affinely parametrized) and
~V = dx

dλ , then g(~V , ~V ) = gαβ V
αV β is a constant along the curve.

Soft proof: Use the Leibniz rule for ∇, plus ∇g = 0 and ~V · ∇~V = 0.

Hard verification: Use the Leibniz rule for ∂, plus the geodesic equation
and the formula for Γ.

Length and action. Now consider any curve (not necessarily a geodesic)
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x: [λ0, λ1] → M and its tangent vector ~V ≡ dx
dλ . (Assume that x(λ) is C0 and

piecewise C1.) Assume that the curve is not both timelike and spacelike (that is,

either ~V · ~V ≥ 0 for all λ or ~V · ~V ≤ 0 for all λ).

The [arc] length of the curve is

s ≡
∫ λ1

λ0

|~V · ~V |1/2 dλ

=

∫ λ1

λ0

∣

∣

∣

∣

gαβ
dxα

dλ

dxβ

dλ

∣

∣

∣

∣

1/2

dλ

(which is independent of the parametrization)

≡
∫

curve

|gαβ dx
α dxβ |1/2

≡
∫

curve

ds.
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If the curve is not null, the mapping λ 7→ s is invertible, so s is a special choice
of parameter (a new and better λ). Any parameter related to s by an affine
(inhomogeneous linear) transformation, φ = as+ b, is called an affine parameter
for the curve.

The action or energy of the curve is

σ ≡ 1

2

∫ λ1

λ0

~V · ~V dλ

=

∫ λ1

λ0

1
2gαβ ẋ

αẋβ dλ.

Note that the integrand looks like a kinetic energy. This integral is not indepen-
dent of the parametrization.

We can use these integrals like Lagrangians in mechanics and come up with
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the geodesics as the solutions. We consider variations of the curve, with fixed
endpoints and a fixed parametrization interval [λ0, λ1].

Theorem:

A) A nonnull, not necessarily affinely parametrized geodesic is a stationary point
of the length of the curve: δs = 0.

B) An affinely parametrized, possibly null geodesic is a stationary point of the
action of the curve: δσ = 0. Conversely, a stationary point of σ is an affinely
parametrized geodesic.

C) For an affinely parametrized geodesic,

σ = ±1
2 (λ1 − λ0)

−1s2

= ±1
2s

2 if the interval is [0, 1].
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(Note that for a general curve, σ may have no relation to s.)

Proof of C from B: For an affinely parametrized geodesic, ~V · ~V is a
constant, so both integrals can be evaluated:

σ = 1
2
(λ1 − λ0)~V · ~V , s = (λ1 − λ0)|~V · ~V |1/2.

Proof of B: δσ = 0 is equivalent to the Euler–Lagrange equation

d

dλ

∂L
∂ẋα

− ∂L
∂xα

= 0,

where
L = 1

2gαβ ẋ
α ẋβ .

Thus
∂L
∂xα

= 1
2gγβ,α ẋγ ẋβ ,
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∂L
∂ẋα

= gαβ ẋ
β ,

d

dλ

∂L
∂ẋα

= gαβ ẍ
β + gαβ,γ ẋ

γ ẋβ .

The equation, therefore, is

0 = gαβ ẍ
β + 1

2

(

gαβ,γ + gαγ,β − gγβ,α
)

ẋβ ẋγ ,

which is the geodesic equation.

Proof of A: The Lagrangian L of this new problem is
√
L′, where L′ is,

up to a factor ±2, the Lagrangian of the old problem, B. Therefore, we can write

∂L
∂xα

=
1

2
√
L′

∂L′
∂xα

,
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and similarly for the ẋ derivative. (The denominator causes no problems, because
by assumption L′ 6= 0 for the curves under consideration.) Thus the Euler–
Lagrange equation is

0 =
d

dλ

∂L
∂ẋα

− ∂L
∂xα

=
1

2
√
L′

[

d

dλ

∂L′
∂ẋα

− ∂L′
∂xα

]

+
1

2

∂L′
∂ẋα

d

dλ

1√
L′

.

If the curve is an affinely parametrized geodesic, then both of these terms equal
0 and the equation is satisfied. What happens if the curve is not affinely
parametrized? Well, we know that s =

∫

L is invariant under reparameteriza-
tions, so its stationary points must always be the same paths. (Only the labelling
of the points by λ can change.) Therefore, our differential equation must be
just the geodesic equation, generalized to arbitrary parametrization. This can be
verified by a direct calculation.
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Remarks:

1. A stationary point is not necessarily a minimum. When the metric is Lorentz-
ian, a timelike geodesic is a local maximum of s, and a spacelike geodesic
is a saddle point. This is intuitively clear from the fact that null lines have
zero length:
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← light cone

geodesic

geodesic→

•

•

•
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2. In the Riemannian case, if the manifold is complete (every sequence that
looks like it ought to have a limit (is Cauchy) does have a limit), then any
two points are connected by at least one geodesic, namely, the curve that
minimizes the distance between them. There may be other geodesics; for
example, on a sphere, two typical points are joined by a second geodesic,
which maximizes the distance, and antipodal points are joined by infinitely
many geodesics, all absolute minimizers. If the Riemannian manifold has
holes, a minimizing curve may not exist. A Lorentzian manifold, even if
complete, may have pairs of points that are not connected by any geodesics.
(De Sitter space is a famous example.)
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3. The extra symmetry of the s Lagrangian (under nonlinear reparametriza-
tion) and the correponding extra looseness of the equations provide a model
of gauge symmetry and of symmetry under general coordinate transforma-
tions in general relativity. Choosing affine parametrization is an example of
gauge fixing, like Lorenz gauge in electromagnetism. (Choosing t = x0 as
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the parameter, as in nonrelativistic physics, is another choice of gauge, like
Coulomb gauge in electromagnetism.) This observation is associated with
the name of Karel Kuchař.

4. The variational principle δσ = 0 gives a quick way of calculating Christoffel
symbols — more efficient than the formula in terms of derivatives of the
metric. For example, consider polar coordinates in R2. We have

σ =

∫ λ1

λ0

1

2
gαβ ẋ

αẋβ dλ

=

∫ λ1

λ0

1

2
(ṙ2 + r2θ̇

2
) dλ.

Thus the Lagrangian is

L =
1

2
(ṙ2 + r2θ̇

2
).
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The resulting geodesic equations are

0 =
d

dλ

∂L
∂ṙ
− ∂L

∂r
= r̈ − rθ̇

2
,

0 =
d

dλ

∂L
∂θ̇
− ∂L

∂θ
=

d

dλ
(r2θ̇) = r2θ̈ + 2rṙθ̇.

But we know that the geodesic equation has the form (†):
0 = ẍα + Γα

βγ ẋ
β ẋγ .

Comparing:
Γr

θθ = −r, Γr
rr = 0 = Γr

θr ,

Γθ
rθ = +

1

r
, Γθ

θθ = 0 = Γθ
rr .

(Note that the off-diagonal coefficients need to be divided by 2 because they
occur in two identical terms in (†).) But these formulas are the same as
(5.44).
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Curvature

I shall define curvature by the commutator approach. (Read Schutz for the
definition in terms of parallel transport around a closed path.)

Recall that covariant differentiation maps
(

p
q

)

-tensors to
(

p
q+1

)

-tensors.

Therefore, the second derivative is a
(

p
q+2

)

-tensor. For example,

V α
;µν = (V α

;µ),ν + Γα
βν(V

β
;µ)− Γβ

µνV
α
;β

= V α
,µν + (Γα

βµV
β),ν + Γα

βν(V
β
;µ)− Γβ

µνV
α
;β

= V α
,µν + Γα

βµ,νV
β + Γα

βµV
β
,ν

+ Γα
βνV

β
,µ − Γβ

µνV
α
,β + Γα

βνΓ
β
γµV

γ − Γβ
µνΓ

α
γβV

γ .

Now contemplate (without writing it down) V a
;νµ . In the foregoing expression,

the terms involving derivatives of V components are symmetric, and the others
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are not. Therefore,

V α
;νµ − V α

;µν = (something)αβµνV
β. (†)

Since ~V is arbitrary, “(something)” is a linear map from
(

1
0

)

-tensors to
(

1
2

)

-tensors;

hence it is a
(

1
3

)

-tensor. It is the Riemann tensor, Rα
βµν . Returning to the

calculation, we find that

Rα
βµν = −Γα

βµ,ν + Γα
βν,µ + Γα

γµΓ
γ
βν − Γα

γνΓ
γ
βµ .

Recall that
V α

;µν ≡ ∇ν∇µV
α.

(Note the reversal of index order.) Thus we can write the fundamental equation
as

[∇µ,∇ν ]V
α ≡ (∇µ∇ν −∇ν∇µ)V

α = Rα
βµνV

β. (∗)
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This is often called the Ricci identity. (Note that the “practical person’s” version,
in terms of subscripts, has the indices arranged in the most practical way: The
equation (†) is a machine for replacing indices in abnormal order with indices in
standard order.)

For future reference I note that the second covariant derivative of a scalar
function is independent of index order. This is proved by a calculation similar to
the foregoing one for derivatives of vector fields. Both calculations appeal to the
symmetry of the Christoffel symbol in its subscripts, hence their conclusions do
not apply to connections with torsion. Note also that the third derivative of a
scalar is the second derivative of a [co]vector, so the order of the outer two indices
does matter.

Alternative version. Most modern expositions written by mathematicians
present the foregoing development in a different way.
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From a vector field, ~U , we can form a differential operator

∇~U = ~U · ∇ ≡ Uµ∇µ .

Let’s look first at the commutator of two such operators acting on a scalar func-
tion (cf. Exercise 6.39(a)):

[~U · ∇, ~W · ∇]f = Uµ∇µ(W
ν∇νf)−W ν∇ν(U

µ∇µf)

= UµW ν∇µ∇νf − UµW ν∇ν∇µf

+ Uµ(∇µW
ν)∇νf −W ν(∇νU

µ)∇µf

= (UµW ν
;µ −WµUν

;µ)∇νf

(since the second derivative of a scalar is symmetric)

= (UµW ν
,µ −WµUν

,µ)∇νf

(since the Γ terms cancel)

≡ [~U, ~W ] · ∇f = ∇[~U, ~W ]f.
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We can think of the vector field ~U and the first-order linear partial differential
operator ∇~U as being in some sense the same thing. (Recall that a tangent vector
is a way to manufacture a scalar out of the gradient of a scalar function.) Under
this identification, the commutator of two vector fields is a new vector field, with
components given by either of the last two substantive lines in the calculation
above.

With this preliminary out of the way, we can look at the commutator of ∇~U
and ∇ ~W acting on vector fields.

[~U · ∇, ~W · ∇]V α = Uµ∇µ(W
ν∇νV

α)−W ν∇ν(U
µ∇µV

α)

= UµW ν∇µ∇νV
α − UµW ν∇ν∇µV

α

+ Uµ(∇µW
ν)∇νV

α −W ν(∇νU
µ)∇µV

α

= UµW ν [∇µ,∇ν ]V
α + (UµW ν

;µ −WµUν
;µ)∇νV

α

= R(~V , ~U, ~W )α + ([~U, ~W ] · ∇V )α.
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In the last step, we have given the first term a new name, and reexpressed the
other term in terms of the commutator vector field discovered in the scalar calcu-
lation. Since R(~V , ~U, ~W ) depends multilinearly on its three arguments, it defines
(or is defined by, or simply is) a tensor:

R(~V , ~U, ~W )
O→ Rα

βµνV
βUµW ν .

Solving our hard-won equation for R, we have

R(~V , ~U, ~W ) = [~U · ∇, ~W · ∇]~V − [~U, ~W ] · ∇V. (∗∗)

(∗∗) can be used as the definition of the curvature tensor.

Let us compare (∗∗) with (∗). If we think of ~U and ~W as basis vectors in
the µ and ν directions, then the relation of (∗) to the first term in (∗∗) seems

clear. Why, then, do we need the second term? The reason is that when ~U · ∇
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acts on ~W · ∇~V , it must hit ~W as well as ~V (and likewise with the vector fields
interchanged). We don’t want these derivatives of the auxiliary vector fields to
be in the definition of the curvature tensor, so we have to subtract them off.

The philosophical reason one might prefer the second approach is that it
hews closer to the definition of a tensor as a multilinear functional by supplying
the auxiliary vector fields as arguments of that functional. One can be confident
that ultimately one is always dealing with invariantly defined scalars. (Personally,
I don’t find this argument persuasive; I think the second derivative of a

(

p
q

)

-tensor

is perfectly clearly defined as a
(

p
q+2

)

-tensor, and I prefer the definition (∗), where
no correction term is necessary.)

Warning: Some people insist on regarding ∇µ as just shorthand for ~eµ ·∇ ≡
(~eµ)

α∇α in some basis {~eµ(x)} of vector fields. From that point of view we
ought always to use (∗∗) instead of (∗). If this basis is a coordinate basis, then
[~eµ, ~eν ] = 0, and hence there is no discrepancy between the two formulas. But
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for a noncoordinate basis the commuatator of the basis fields is generally not
zero (see Sec. 5.6). Therefore, for a noncoordinate basis (∗) is false — in that
interpretation. I insist, however, that (∗) is a valid tensor equation when properly
understood; it refers to the components of

(

1
2

)

-tensors with respect to an arbitrary
basis at a point.

Tensors of other types. (∗) generalizes to tensors with several indices just
as the Christoffel formula for the covariant derivative does: You hang a Riemann
tensor on each index and add up the terms. For instance,

Tαβ
;νµ = Tαβ

;µν +Rα
σµνT

σβ +Rβ
σµνT

ασ.

The plUs–Up rule applies here too; that is, when applied to covariant indices the
Riemann tensor acquires a minus sign. Thus

Fµ
ν;βα = Fµ

ν;αβ +Rµ
σαβF

σ
ν −Rσ

ναβF
µ
σ .
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We’ll soon see that R is antisymmetric in its first two indices; therefore, this
equation is equivalent to Schutz’s equation (6.78):

Fµ
ν;βα = Fµ

ν;αβ +Rµ
σαβF

σ
ν +Rν

σ
αβF

µ
σ.

It is to that equation that Schutz’s parenthetical remark about index-raising
applies.

Symmetries of the Riemann tensor.

(1) Rα
βµν = −Rα

βνµ .

(This is always true, by virtue of the definition of R in terms of a commutator.)

(2) Rαβµν = −Rβαµν .

(This is proved for the metric-compatible, torsionless connection only. It has been
dubbed the “zeroth Bianchi identity”.)

(3) Rα
µνρ +Rα

νρµ +Rα
ρµν = 0.
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(This is called the cyclic identity or the “first Bianchi identity”.)

(4) Rα
βµν;ρ +Rα

βνρ;µ +Rα
βρµ;ν = 0.

(This is the Bianchi identity — called the “second” by those who also call (3) a
Bianchi identity.)

(5) Rαβµν = Rµναβ .

(Obviously (5) (given (1)) implies (2), but it is easier to prove (2) first.)

Proof of (2): 0 = gµν;βα − gµν;αβ = −Rγ
µαβgγν −Rγ

ναβgµγ = −Rνµαβ −
Rµναβ .

Proof of (3) and (4): Start from [an instance of] the Jacobi identity :

[∇µ, [∇ν ,∇ρ]]V
α + [∇ν , [∇ρ,∇µ]]V

α + [∇ρ, [∇µ,∇ν ]]V
α = 0.
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(If you write it out, you’ll see that all terms cancel in pairs.) Let’s look at the
first term in detail:

∇µ(R
α
βνρV

β)− [∇ν ,∇ρ](V
α
;µ)

= Rα
βνρ;µV

β +Rα
βνρV

β
;µ −Rα

βνρV
β
;µ +Rγ

µνρV
α
;γ

= Rα
βνρ;µV

β +Rγ
µνρV

α
;γ .

Adding the similar contributions from the other two terms, we get, schematically,

0 = (4)αV β + (3)γV α
;γ .

Since the ~V and ∇~V at any one point are completely arbitrary, the coefficients
(4) and (3) must vanish identically, QED.

Proof of (5): Use (1), (2), and (3).

Rµναβ = −Rµαβν −Rµβνα = Rαµβν −Rβµαν .
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Therefore, on the one hand,

Rµναβ = −Rανµβ −Rαβνµ −Rβµαν = Rαβµν +Rανβµ −Rβµαν ,

but on the other hand,

Rµναβ = Rαµβν +Rβανµ +Rβνµα = Rαβµν +Rαµβν −Rβναµ .

Therefore, adding,

2(Rµναβ −Rαβµν) = RανβµRαµβν −Rβµαν −Rβναµ .

The left side of this equation is antisymmetric in {µν} and the right side is
symmetric in {µν}. Therefore, both of them must be the zero tensor.
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Advanced Topics on Geodesics and Curvature

Geodesic Deviation

The physics: Tides. The equivalence principle
notwithstanding, a sufficiently large falling elevator on
earth can be distinguished from an inertial frame in empty
space. A naturally spherical body tends to become a cigar.

The mathematics. A geodesic is a map x(λ) from I ⊆ R→M . Consider
a whole family of these,

xǫ(λ) (−ǫ0 < ǫ < ǫ0),

obtained by varying the initial data of x0 ≡ x. Then xǫ(λ) is a function of two
variables, I × J ⊆ R2 → M . We are interested in how neighboring geodesics
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behave as seen from x0 . That is, how does x behave as ǫ varies with λ fixed? To
first order, this question is answered by

~W ≡ ∂x

∂ǫ
(0, λ),

a vector field. Another vector field in the problem is ~U ≡ ∂x
∂λ , the tangent vector

to the geodesics.

The goal: The equation of geodesic deviation

This is (6.87) in Schutz’s book.

D2Wα

dλ2 ≡ ∇~U∇~UW
α = Rα

µνβU
µUνW β.
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(For simplicity I assume no torsion.) The equation is a second-order linear “equa-

tion of motion” for ~W along x0 . I’ll derive it in two ways.

Classical applied-math approach (perturbation theory)

The geodesic equation is

(1)
d2xα

dλ2 + Γα
βγ

(

x(λ)
) dxβ

dλ

dxγ

dλ
= 0.

Substitute

(2) x(λ) = x0(λ) + ǫW (λ) +O(ǫ2)
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where x0 is already a solution of (1).

0 =(3)

d2x0
α

dλ2 + Γα
βγ

(

x0(λ)
) dx0

β

dλ

dx0
γ

dλ

+ ǫ

[

d2Wα

dλ2 + 2Γα
βγ

(

x0(λ)
) dx0

β

dλ

dW γ

dλ
+ Γα

βγ,δ

(

x0(λ)
) dx0

β

dλ

dx0
γ

dλ
W δ(λ)

]

+O(ǫ2).

The ǫ0-order term is 0 by assumption. The requirement that the thing in brackets
vanish is the equation we need to study. (Another way to get that equation is to
differentiate (1) with respect to ǫ.)

If we were really doing just classical applied math, we would set the ex-
pression in brackets equal to zero, draw a box around it, and relax. We want,
however, to express that coordinate-dependent equation in geometrical terms.
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Recall that the covariant (absolute) derivative along the curve is

DV α

dλ
≡ dV α

dλ
+ Γα

βγV
βUγ where Uγ ≡ dx0

γ

dλ
.

Solve this for the coordinate derivative:

(4)
dV α

dλ
=

DV α

dλ
− Γα

βγV
βUγ .

(We will use this formula several times, in the process of eliminating coordinate

derivatives in favor of covariant ones.) Let ~V = ~W in (4) and differentiate:

d2Wα

dλ2 =
d

dλ

DWα

dλ
− Γα

βγ,δW
βUγU δ − Γα

βγ
dW β

dλ
Uγ − Γα

βγW
β dUγ

dλ
.

151



Now apply (4) again, to ~U , ~W , and D ~W
dλ

:

d2Wα

dλ2 =
D2Wα

dλ2 − Γα
βγ

DW β

dλ
Uγ − Γα

βγ,δW
βUγU δ

− Γα
βγ

DW β

dλ
Uγ + Γα

βγΓ
β
δζW

δU ζUγ − Γα
βγW

β DUγ

dλ
+ Γα

βγW
βΓγ

δζU
δU ζ .

But the geodesic equation (1) is equivalent to

(1′)
DUα

dλ
= 0.

Thus one of the terms we’ve just calculated is zero. Two of the others combine,
and we get

d2Wα

dλ2 =
D2Wα

dλ2 − 2Γα
βγ

DW β

dλ
Uγ

− Γα
βγ,δW

βUγU δ + Γα
βγΓ

γ
δζ(W

δU ζUβ +W βU δU ζ).(5)
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Now recall that our goal is to covariantize the equation

(3′) 0 =
d2Wα

dλ2 + 2Γα
βγU

β dW
γ

dλ
+ Γα

βγ,δU
βUγW δ.

Substituting (5) and (4) (with ~V = ~W ) into (3′) and cancelling a few terms and
renaming a few indices, we get finally

(6) 0 =
D2Wα

dλ2 + UµUνW β
[

Γα
µν,β − Γα

βµ,ν − Γα
νγΓ

γ
βµ + Γα

βγΓ
γ
µν

]

.

And our faith is rewarded! For the object in brackets in (6) is none other than
−Rα

µνβ . Thus (6) is exactly the equation of geodesic deviation in the form (6.87).

Modern differential-geometry approach

Reference: W. L. Burke, Applied Differential Geometry, Sec. 61.
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Recall that
D2 ~W

dλ2 = ∇~U∇~U
~W .

Lemma: ∇~U
~W = ∇ ~W

~U.

Therefore, [~V , ~W ] = 0 (cf. Exercise 6.39(a), the scalar commutator rule).

Remark: This lemma is equivalent (via something called Frobenius’s theo-
rem) to the fact that the geodesics trace out a “ribbon” in space on which λ and

ǫ are coordinates. Our basic tacit assumption is that ~W ≡ dx
dǫ

exists. This follows
from the smooth dependence of solutions of ODEs on their initial data.
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Proof of lemma:

∇~UW
µ =

∂

∂λ
(Wµ) + Γµ

αβW
αUβ

=
∂2xµ

∂λ ∂ǫ
+ Γµ

αβW
αUβ,

which is obviously symmetrical in ~U and ~W .

Proof of theorem: By the first half of the lemma,

∇~U∇~U
~W = ∇~U∇ ~W

~U

= ∇ ~W∇~U
~U +∇[~U, ~W ]

~U +R(~U, ~U, ~W )

(by (∗∗), the vector commutator rule). But in this formula, the first term is 0
by the geodesic equation (1′), and the second term is 0 by the second half of the
lemma. This leaves us with the geodesic equation.
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If this proof went by too fast, a middle ground between it and the nonco-
variant proof is to write out this last calculation in components (∇~U = Uα∇α ,
etc.) and use the form (∗) of the vector commutation rule.

Normal coordinates as geodesic polar coordinates

Schutz introduced normal coordinates in a physical way, as a “local Lorentz
frame”: At the point x0 (with coordinates 0), require

gµν(0) = ηµν and gµν,α(0) = 0 (or Γα
βγ(0) = 0).

Thus
ds2 = −dt2 +

∑

j

dxj
2 +O

(

(coords)2
)

.

In particular, all cross terms are of second order.
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Now that we understand geodesics, we can make a more geometrical, al-
ternative construction. Corresponding to each unit tangent vector ~V at x0

(gµνV
µV ν = ±1), there is a unique geodesic that starts from 0 in the direction

~V — i.e., has the initial data

xµ(0) = 0,
dxµ

ds
(0) = V µ.

Each point near x0 on such a curve can be labeled by (1) its arc length, s ≡ r, from

the origin, and (2) the vector ~V , which is essentially n − 1 angular coordinates
(n = dimension). In the Riemannian case we have this sort of picture:
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Eventually the geodesics may cross each other — this phenomenon is called a
caustic — but near x0 they neatly cover a neighborhood. In the Lorentzian case
the spheres become hyperboloids, and the coordinates are singular on the light
cone.

However, interpreting r as a radial coordinate and adopting suitable angular
coordinates for ~V , we recover a nonsingular Cartesian coordinate system by a
hyperbolic analogue of the polar-to-Cartesian transformation. In two-dimensional
space-time, this transformation is
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t = r sinhχ, x = r coshχ

in one of the quadrants, and similar formulas in the others. (These formulas
should be familiar from previous discussions of rapidity and of uniform accelera-
tion.)

Let us look at the form of the metric in the polar coordinates. I will con-
centrate on the Riemannian case for simplicity. The coordinates are r, θ1 , . . . ,
θn−1 , where the θ’s are angular coordinates for the unit vector ~V regarded as a
point on the unit sphere. The space of tangent vectors at x0 can be thought of
as a copy of Euclidean Rn. In the Lorentzian case the story is the same, except
that one of the angles is a hyperbolic rapidity variable χ and the tangent space
is Minkowskian Rn.

We now ask: What is ds2 in these coordinates? Well, for displacements along
the radial geodesics, the arc length just equals the coordinate increment. Thus

ds2 = dr2 + (terms involving dθj ).
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I claim:

Theorem:

(1) The geodesics are orthogonal to the surfaces of constant r (the spheres or
hyperboloids). Therefore, the dr dθj terms are identically zero.

(2) The purely angular part of the metric coincides with the angular part of
the metric of Euclidean space, up to corrections of second order in r (if the
metric is sufficiently smooth).

That is,

ds2 = dr2 + r2[dΩ2 +O(r2)],

where only angular differentials appear in the error term (and dΩ2 = dθ2 +
sin2 θdφ2 in the usual polar coordinates in R3, for example).
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In the Lorentz case, the corresponding statement is

ds2 = ±dr2 + r2[dΩ±
2 +O(r2)],

where dΩ± is an appropriate hyperboloidal metric and the sign depends on
whether the geodesic to the point in question is spacelike or timelike.

Here is a crude, intuitive proof of (1) in the Riemannian case: Suppose the
geodesic at P does not meet the sphere normally, Draw a curve that joins the
geodesic at a point R very near P and does meet the sphere normally, at a point
Q. We may assume that the region containing P, Q, and R is so small that
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the geometry is essentially Euclidean there, and that QR and QP are approxi-
mately straight lines. Then PQR is approximately a right triangle, and by the
Pythagorean theorem RQ is shorter than RP. Hence 0RQ is shorter than r, the
geodesic radius of the sphere (the length of both 0P and 0Q. But this contradicts
the fact that 0Q is the shortest path from 0 to Q.

A more convincing and general proof also makes use of the variational char-
acterization of geodesics. Recall that the affinely parametrized geodesic 0P sta-
tionarizes the action

σ ≡
∫ 1

0

1

2
gµν
(

x(λ)
) dxµ

dλ

dxν

dλ
dλ,

and that on the geodesic, σ = 1
2r

2. (The normalization condition that λ runs
from 0 to 1 is equivalent to the condition that the length of the initial tangent
vector dxµ

dλ (0) is equal to r, the length of the geodesic segment in question. This is
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a change from the convention used earlier, where the tangent vector was assumed
to be a unit vector.)

Consider the variation of 0P to 0Q, Q being a point very near P on the same
geodesic sphere. Thus δσ = 0. To calculate the variation from the integral, note
that for fixed λ, x(λ) is determined by Q, since the geodesic 0Q is unique as long
as we stay inside a small enough neighborhood of 0. So we get

δσ =

∫
[

1

2

∂gµν

∂xρ

∂xρ

∂Qτ
δQτ dxµ

dλ

dxν

dλ
+ gµν

dxµ

dλ

∂

∂Qτ

(

dxν

dλ

)

δQτ

]

,

where {Qτ} are coordinates of Q (in any system). Since λ and Q are independent
variables (on which x depends),

∂

∂Qτ

(

dxν

dλ

)

=
d

dλ

(

∂xν

∂Qτ

)

.
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This allows us to integrate by parts in the second term of δσ, thereby revealing
(after renaming ν as ρ) a common factor ∂xρ

∂Qτ δQτ in the first and second terms.
Moreover, the total expression multiplying this object vanishes, because it is just
the geodesic equation. (Recall that the derivation of the geodesic equation from σ
involves essentially this same calculation, except that there the variation vanished
at both endpoints and was not itself a geodesic.) So we are left with the endpoint
terms:

0 = δσ = gµν
dxµ

dλ

∂xν

∂Qτ
δQτ

∣

∣

∣

∣

P

0

.

The contribution from the endpoint 0 vanishes since that end of the geodesic is
fixed. At the other end, x is Q, so ∂xν

∂Qτ = δντ and

0 = gµν
dxµ

dλ
δQν .

This conclusion has been proved for all δQν parallel to the sphere. Therefore, the
tangent vector to the geodesic is perpendicular to the sphere, QED.
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Remark. A generalization of this argument proves that gµν
dxν

dλ = ∇µσ.
In words: The gradient of the action σ(x, x0) with respect to x is equal (up to
index raising) to the vector tangent to the geodesic segment from x0 to x and
with length equal to the length of the segment. (This vector is in the tangent
space at x, and it points away from x0 .) This frequently used formula is stated
without proof in my book (p. 177), after the observation that it is obvious in flat
space. I thank Frank Molzahn for help on this point.

We still need to prove property (2) of the theorem. My proof of this is
suggested by, but different from, the appendix of R. N. Pederson, Commun.
Pure Appl. Math. 11, 67 (1958). (He proves a weaker conclusion from a weaker
smoothness hypothesis.)

Write the solution of the geodesic equation as

xµ = rV µ +O(r2). (∗)
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(That is what it means for ~V to be the tangent vector to the geodesic, with
parameter r.) Regard this as the transformation from polar normal coordinates
into the original, arbitrary coordinates. Since

dxµ =
∂xµ

∂r
dr +

∑

j

∂xµ

∂θj
dθj ,

we have

ds2 = dr2 + 0 dr dθj +
∑

j,k

gµν
∂xµ

∂θj
∂xµ

∂θk
dθj dθk

(where the form of the dr-dependent terms follows from previous considerations).
But according to (∗),

∂xµ

∂θj
= r

∂V µ

∂θj
+O(r2).

When we substitute this into the formula for ds2, the first term yields r2 dΩ2.
The error term yields something of order O(r4) = r2O(r2), which is what we
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want to see. [Look back at the statement of property (2).] Superficially the cross
term is O(r3). However, we shall show that to lowest nontrivial order in r, the
O(r2) term in (∗) is orthogonal to the other term. Thus the cross term vanishes
to r3 order; it is actually O(r4) as needed.

To prove this orthogonality assertion, write the Taylor expansion of the
geodesic as

xµ(r) = rV µ(0) +
1

2
r2Uµ +O(r3),

where ~U is at present unknown to us, but we want to prove it orthogonal to ~V .
We have

V µ(r) ≡ dxµ

dr
= V µ(0) + rUµ +O(r2),

hence

g
(

~V (r), ~V (r)
)

= 1 + 2rV µUµ +O(r2).
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But recall that for an affinely parametrized geodesic, the length of the tangent
vector is always exactly equal to 1. Therefore the term 2rV µUµ must vanish,
QED. (This is essentially the same argument that shows that 4-acceleration in
special relativity is orthogonal to 4-velocity.)

In summary, we have shown that

ds2 = (flat metric in polar coords.) +O(r4).

When we convert from polar to Cartesian coordinates we lose two powers of r
from the erstwhile angular terms:

ds2 = (flat metric in Cartesian coords.) +O(r2).

Thus the new Cartesian coordinates are [the Riemannian analogue of] local iner-
tial coordinates as defined by Schutz.
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Physics in Curved Space (Chapters 7 and 8)

The Strong Equivalence Principle2

By “strong equivalence principle” I mean the corollary Schutz draws from the
Einstein equivalence principle iv′. It is the assertion that the only gravitational
interaction is that obtained from special-relativistic equations of motion (of mat-
ter, fields, etc.) by replacing ηαβ by gαβ and ∂µ by ∇µ . It is the counterpart of
minimal coupling of electromagnetism: The only electromagnetic interaction of
matter is that obtained by replacing ∂µ by ∂µ+ieAµ in the Schrödinger equation,
Klein–Gordon field equation, etc.

2This section of the book has changed a lot in the new edition, so these notes

may soon change, too.
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In my opinion, the strong equivalence principle is not a dogma, but a strategy:
a tentative assumption made to reduce the number of arbitrary parameters in the
theory. This is an instance of Occam’s razor: Don’t complicate your theory unless
and until experiment forces you to do so.

For example, consider the massless Klein–Gordon equation satisfied by a
scalar field:

φ ≡ ηαβ∂α∂βφ = 0.

The minimal generalization to curved space is

gφ ≡ gαβ∇α∇βφ = 0.

However, what is wrong with

gαβ∇α∇βφ+ ξRφ = 0,
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where ξ is some numerical constant? (The curvature term vanishes in flat space.)
In fact, there are theoretical reasons (conformal invariance) for preferring the
value ξ = 1

6
to ξ = 0 !

Minimal coupling also contains an ambiguity: Should ∂α∂β be replaced by
∇α∇β or by∇β∇α ? Their difference involves Rµ

ναβ , in general. (In the example,
this didn’t appear, for two reasons.)

This ambiguity has an analogue in electromagnetism. Consider the
Schrödinger equation for a nonrelativistic particle with spin 1

2 . The wave func-
tion is a two-component spinor. Such objects are acted upon by the famous Pauli
matrices, satisfying

σ1σ2 = iσ3 = −σ2σ1 , etc., σj
2 = 1.

It follows that in the kinetic-energy term of the classical Hamiltonian,

(p · σ)2 = p2. (∗)
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(A 2×2 identity matrix is implicit on the right side of this equation and in similar
expressions hereafter.) In quantum mechanics, pj gets replaced by −i∂j . So far
there is no problem. However, when we add a magnetic field, the left side of (∗)
becomes

[(p− ieA) · σ]2 =

[ 3
∑

j=1

(−i∂j + eAj)σj

]2

with typical term

(−i∂3 + eA3)
2 + σ1σ2

[

(−i∂1 + eA1)(−i∂2 + eA2)− (−i∂2 + eA2)(−i∂1 + eA1)
]

.

The expression in brackets boils down to

−ie(∂1A2 − ∂2A1) = −ieB3 .

Therefore,
[(p− ieA) · ~σ]2 = (p− ieA)2 + eB · ~σ.
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The Hamiltonian with the field turned on seems to depend upon an arbitrary
decision about how to write down the Hamiltonian for the case with the field
turned off! In fact, the version including the magnetic moment term, eB · ~σ,
is the correct one, as determined by experiment or by reduction from the Dirac
equation. (Note that in the modern understanding of gauge theories, eFµν is the

“curvature” associated with the “electromagnetic covariant derivative” ~∂ + ieA.
Thus the relationship of this example to the ambiguity in the strong equivalence
principle is rather close.)

So far I have been talking about fundamental dynamical equations. Schutz’s
examples of the strong equivalence principle are all secondary equations, where
(in my opinion) the SEP is more a definition than a physical assumption.

1. Conservation of particles.

(nUα);α = 0.
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Suppose we generalized this to (nUα);α = λR. Only λ = 0 would describe
a theory in which the number of particles is conserved. If we start with
conservation, then the equation with λ = 0 follows from Gauss’s theorem,
(6.45).

2. Conservation of energy.

∇µT
µν = 0.

It can be shown (as a form of Noether’s theorem) that this must be true in
any generally covariant theory derived from a (covariant) action principle. In
practice, the physical question is not whether the stress tensor is conserved,
but rather what the conserved stress tensor is for a given theory. For the
fluid example, the conservation of (7.7) follows from the properties of the
quantities in it; it is not a separate postulate.
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Random comments on Chapter 8

The Newtonian gravitational potential equations are given as [(8.1–2)]

∇2φ = 4πGρ; φ = − Gm

r
for a point mass.

This historical definition of G is clearly off from the “natural” or “fundamental”
definition by a factor of 4π; logically the 4π belongs not in the fundamental
differential equation, but in the solution of a problem with spherical symmetry :

∇2φ = Gρ; φ = − Gm

4πr
for a point mass.

The same unfortunate tradition survives in traditional cgs electromagnetic units;
it has been cured in Lorentz–Heaviside units (and in SI units, but those have a
worse ingredient, the gratuitous constants ǫ0 and µ0).
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In passing to general relativity, some additional factors of 2 accumulate.
Thus Einstein’s basic gravitational field equation is [(8.10)]

Gαβ = 8πGTαβ ,

and its linearized (weak-field) version in Lorentz gauge is [(8.42)]

h
µν

= −16πGTµν .

In these equations I have reinserted a constant G, where Schutz chose units so
that G = 1. One can also choose G = 1/4π, 1/8π, or 1/16π, according to taste.
Be prepared to encounter many conventions in later life.

Incidentally, a wave equation such as (8.42) has solutions with the usual
structure for the solution space of a linear equation:

any particular solution + solution of homogeneous equation.
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Moreover, for the wave equation in particular (or any other second-order hyper-
bolic equation) the physically preferred solution is usually the one in which the
source (T ) affects the field (h) only in the future. (Think of h as analogous to
electromagnetic field and T as analogous to electric charge and current density.
Radiation from a moving charge will show up only inside and on the light cones
of the space-time points where the moving charge is.) When a problem has been
properly posed (e.g., the gauge freedom discussed below has been taken care of),
for a given source (satisfying mild technical conditions) there will exist a unique
solution with this property, the retarded solution. However, the most general
solution also contains a homogeneous piece, which does not vanish in the far
past. This term represents incident waves, radiation that was already present in
the system, not created by the source. In principle, you can have gravitational
radiation without having any matter source in the region of space considered.

In general, the solution of a wave equation (even a nonlinear one, such as
the full Einstein equation) is uniquely determined by giving the value of the field
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and its time derivative at one time. In curved space, this means the field and
its normal derivative on a spacelike hypersurface. (Here I am sweeping a whole
subject under the rug. The statement I have just made is true (by definition)
only if the hypersurface is a Cauchy hypersurface — big enough so that data on it
determine the solution uniquely, but not so big that data on it can be inconsistent
(preventing existence). Whether such a hypersurface exists is a nontrivial ques-
tion about the global geometry of the space-time. For example, two-dimensional
DeSitter space turned on its side has an existence problem if the periodic time
coordinate is taken seriously, and a uniqueness problem if it is “unwrapped”.)
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Counting degrees of freedom

How many independent components does the gravitational field have? This
is a very subtle question. (Let’s consider only space-time dimension 4.)
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At the most naive level, the metric {gµν} is a 4×4 matrix, so its components
comprise 16 fields. However, this matrix is symmetric, so it’s immediately obvious
that there are only 10 independent components.

But this is not the end of the story. Consider initial data on a certain
hypersurface, and contemplate your right to change the coordinate system off
the hypersurface.
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From the point of view of the coordinate grid in which you do your calcula-
tions, the solution will look different in the two systems. Therefore, contrary
to appearance, the 10 hyperbolic equations plus initial data must not uniquely
determine the 10 components of the solution. This means that in some sense the
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10 equations are not independent. The resolution of this conundrum is that the
energy-momentum conservation law, Tµν

;ν = 0, is 4 linear combinations of the
derivatives of the 10 equations. (On the field side of the equations, this constraint
is the contracted Bianchi identity, Gµν

;ν = 0.) This corresponds neatly to the 4
freely choosable functions in a coordinate transformation. Therefore, we expect
that only 6 components of the metric have true physical meaning, and that the
Einstein equations need to be supplemented by 4 conditions restricting the choice
of coordinates before the full set of equations will determine the metric tensor
uniquely from its initial data. The 4 coordinate conditions are analogous to gauge
conditions in electromagnetism.

However, this is still not all. There is a sense in which the number of in-
dependent dynamical degrees of freedom of the gravitational field is only two,
not six. To clarify both this and the previous reduction from 10 to 6, I will first
consider the electromagnetic analogy in more detail.
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Recall from Part 5 of our investigation of “Special Relativity and Electro-
magnetism” that the equation of motion of the vector potential Aα = (−φ,A)
is

−∂µ∂µA
α + ∂α∂µA

µ = Jα.

(I use Lorentz–Heaviside units so I can ignore the factor 4π.) The spatial (α = j)
component of this equation is

−∂µ∂µA+∇(−∂tφ+∇ ·A) = J. (1)

The time component is

∂µ∂µφ− ∂t(−∂tφ+∇ ·A) = ρ. (2)

The left side of (2) can be written

∇2φ− ∂t(∇ ·A) = ∇ · (∇φ− ∂tA) = ∇ ·E,
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so (2) is just “Gauss’s Law”.

From Part 8 of the electromagnetism paper, the current conservation law,
∂tρ+∇·J = 0, follows automatically from the structure of the Maxwell equations.
This was easy to see when the equations were written in terms of Fαβ ; it can
be verified fairly quickly from (1) and (2). Thus only three of the four equations
are independent. This reflects the freedom to make a gauge transformation,
A′

α = Aα + ∂αχ; inherently, one of the components of A is arbitrary. Indeed,
charge conservation and gauge invariance are closely related. One can show that
the conservation law follows from the gauge invariance of the electromagnetic
action integral introduced in Part 16.

Remark: If we perform a Fourier transformation in all four space-time coor-
dinates, partial differentiation goes over into multiplication by a component of the
Fourier variable (the wave vector kα = (ω,k), identified quantum-mechanically
with a four-momentum vector). From this point of view the conservation law is
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kαĴ
α(k) = 0, which says that at each point in k-space, the [Fourier transform

of the] current vector is perpendicular to k (with respect to the Lorentz inner
product). In the Fourier picture, therefore, the 4 differential equations are lit-
erally linearly dependent: this particular linear combination of them vanishes.
Only the component of Maxwell’s equation perpendicular to the wave vector is
nontrivial. (It may seem that there is a swindle here. When we differentiate a
differential equation with respect to one of its dependent variables, we do not get
a precisely equivalent equation: some information about initial data is thrown
away. However, in Fourier space we are just multiplying by a variable, and we
could later divide by it and recover the original equation. The resolution of this
paradox is that the Fourier treatment tacitly assumes that the functions in the
problem are decaying at infinity, so that their Fourier transforms are well defined.
This is a restriction on the solutions of the equation that we may not be able to
uphold in general. Such technicalities are beyond the scope of this discussion,
and consequently a lot of my remarks will have the ring of “numerology”, not
rigorous mathematical statements.)
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So, gauge freedom cuts the number of independent equations of motion down
from 4 to 3, and likewise the number of physically significant components of the
electromagnetic [potential] field. However — and here comes the main point —
let’s look more closely at (2). It does not involve any second-order time deriva-
tives; in terms of E, it does not involve any time derivatives at all. Therefore, it
is not really an equation of motion at all, but a constraint on the allowed initial
data for the problem. Not all possible initial data (fields and their first time
derivatives) are allowed in this theory. In principle, (2) can be solved for one
field in terms of the others. This is in addition to the one field that can be freely
specified by a choice of gauge. Therefore, of the four fields, there are really only
two that are independent and truly physical. From a quantum-theoretical point
of view, these correspond to the two polarization states of a photon. After giving
the energy and direction of motion (hence the momentum) of a photon, its state
is completely specified by giving its polarization, and there are only two choices,
not three or four.
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To investigate this in more detail, let’s impose Coulomb gauge,

∇ ·A = 0,

where the effect is especially striking. In Fourier space this condition is k ·Â(k) =

0. That is, in this gauge the longitudinal part of Â is not only not an indepen-
dent dynamical object, it is nonexistent. Â(k) has only two components, its
perpendicular or transverse part. Since we are in 3 dimensions, the latter can
be extracted by taking the vector cross product k× Â, which translates back to
x-space as ∇×A ≡ B.

In Coulomb gauge, (2) simplifies to

∇2φ = ρ,

which contains no time derivatives at all! If we assume φ vanishes at infinity, this
can be solved immediately by the Coulomb potential:

φ(x) = − 1

4π

∫

ρ(y)

|x− y| d
3y.
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(More generally, we could add to φ any time-dependent solution of the three-
dimensional Laplace equation. Such a term is the time derivative of another
function of the same type, χ, and then A′ = A+∇χ still satisfies ∇·A′ = 0. Thus
such a term is just another part of the gauge freedom and can be disregarded.)

We have now determined both∇·A and φ without solving a single hyperbolic
equation. For consistency, the other Maxwell equation, (1), must provide exactly
the information needed to solve for the remaining two components of the field,
the transverse part of A. The Coulomb-gauge form of (1) is

−∂µ∂µA−∇(∂tφ) = J.

Although this looks like three equations, it is really only two, since the divergence
of it contains no new information:

−∂µ∂µ∇ ·A−∇2(∂tφ) = ∇ · J;
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−∂t(∇2φ) = −∂tρ;

this is just the derivative of (2). We can exhibit the two genuine equations by
taking the cross product with k in the Fourier representation. The result is
equivalent to

∂µ∂µB = −∇× J.

(The reason why B has only two independent components is that ∇ ·B = 0.)

This whole analysis could be repeated in temporal gauge, defined by the
condition φ = 0; the results are quite similar. However, the case of Lorentz
gauge is harder to analyze, because the constraint equation (2) is disguised as a
hyperbolic equation, φ = ρ (see Part 7).

Gravity is harder still, because (1) the equations are nonlinear; (2) there are
10 fields, not 4, forming a tensor, not a vector; (3) there are 4 conservation laws
and 4 gauge choices, not 1. However, the results are analogous. As previously
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mentioned, the gauge freedom and associated conservation laws cut down the
degrees of freedom from 10 to 6. In addition, there are 4 initial-data constraints
analogous to (2); they can be identified with the Einstein equations with left-
hand sides G00 and G0j , for these contain no second-order time derivatives of the
metric tensor components (cf. Exercise 8.9). As a result the dynamical degrees
of freedom are cut down from 6 to 2, corresponding to two polarization states of
the graviton.

More abou the number of degrees of freedom of a gauge theory

Let us work in the Fourier picture (see Remark above). In a general gauge,
the Maxwell equation for the vector potential is

−∂µ∂µA
α + ∂α∂µA

µ = Jα. (3)
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Upon taking Fourier transforms, this becomes

kµkµA
α − kαkµA

µ = Jα, (3′)

where ~A and ~J are now functions of the 4-vector ~k. (One would normally denote
the transforms by a caret (Âα, etc.), but for convenience I won’t.) The field
strength tensor is

Fαβ = ∂αAβ − ∂βAα, (4)

or
Fαβ = ikαAβ − ikβAα. (4′)

The relation between field and current is (factor 4π suppressed)

Jα = ∂βF
αβ, (5)

or
Jα = ikµF

αµ. (5′)
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Of course, (4′) and (5′) imply (3′).

(3′) can be written in matrix form as

~J = M ~A, (6)

M(~k) = kµkµ I−~k⊗ k̃ =









~k2 − k0k0 −k0k1 −k0k2 −k0k3
−k1k0 ~k2 − k1k1 −k1k2 −k1k3
−k2k0 −k2k1 ~k2 − k2k2 −k2k3
−k3k0 −k3k1 −k3k2 ~k2 − k3k3









(7)

Consider a generic ~k (not a null vector). Suppose that ~A is a multiple of ~k :

Aa(~k) = kαχ(~k). (6′)

Then it is easy to see that ~A is in the kernel (null space) of M(~k) ; that is, it yields
~J(~k) = 0. (In fact, by (4′) it even yields a vanishing F .) Conversely, every vector
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in the kernel is of that form, so the kernel is a one-dimensional subspace. Back
in space-time, these observations correspond to the fact that a vector potential
of the form

~A = ∇χ (8)

is “pure gauge”. This part of the vector potential obviously cannot be determined
from ~J and any initial data by the field equation, since it is entirely at our whim.
(Even if the Lorenz gauge condition is imposed, we can still perform a gauge
transformation with χ a solution of the scalar wave equation.)

Now recall a fundamental theorem of finite-dimensional linear algebra: For
any linear function, the dimension of the kernel plus the dimension of the range
equals the dimension of the domain. In particular, if the dimension of the domain
equals the dimension of the codomain (so that the linear function is represented
by a square matrix), then the dimension of the kernel equals the codimension of
the range (the number of vectors that must be added to a basis for the range
to get a basis for the whole codomain). Thus, in our situation, there must be a
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one-dimensional set of vectors ~J that are left out of the range of M(~k). Taking

the scalar product of ~k with (3′), we see that

kαJ
α = 0 (9′)

is the necessary (and sufficient) condition for (6) to have a solution, ~A. In space-
time, this condition is the conservation law,

∂αJ
α = 0. (9)

(9′) can be solved to yield

ρ = − k · J
k0

. (10′′)

In terms of ~A, the right-hand side of (10′′) cannot contain k0
2 (since (3′) is

quadratic in ~k); that is, the Fourier transform of (10′′) is a linear combination of
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components of the field equation that does not contain second-order time deriva-
tives. In fact, a few more manipulations show that

ρ = ik ·E, (10′)

whose transform is
ρ = ∇ ·E. (10)

That is, the conservation law is essentially equivalent (up to the “swindle” men-
tioned in the Remark) to the Gauss law, which is a constraint on the allowed

initial data (including first-order time derivatives) for ~A.

Conclusion: At each ~k (hence at each space-time point) there are only two
independent physical degrees of freedom, not four or even three. One degree of
freedom is lost to the gauge ambiguity; another is cut out of the space of candidate
solutions by the constraint related to the conservation law. But by Noether’s
theorem, the conservation law is itself a consequence of the gauge invariance. In
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the Fourier picture the fact that degrees of freedom are lost in pairs is consequence
of the dimension theorem for linear functions.

Two analogies between electromagnetism and gravity

Solid lines indicate the gauge-transformation analogy. Dashed lines indicate
the covariant-derivative analogy. Single-shafted arrows indicate differentiation.
Double-shafted arrows indicate a trace operation.
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Cosmology (Chapter 12)

Basics of Robertson–Walker cosmology3

My goal here is to fill in some details in Sec. 12.3, especially the derivation
of the crucial equation (12.46). The main steps in the argument are these:

1. Assume that (in the mean rest frame of the galaxies) the universe is spatially
homogeneous and isotropic, but is changing in time (in an isotropic way, so
that g0j = 0).

3This chapter of the book has changed a lot in the new edition, so these notes

will probably receive further changes, too.
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2. Conclude that (12.6)

ds2 = −dt2 +A(t)2 hjk(x) dx
j dxk,

where h is a time-independent homogeneous, isotropic Riemannian metric
on a three-dimensional manifold. (I write A instead of R to avoid confusion
with the curvature.)

3. Classify the possibilities for h. There are three main possibilities:

k = 0: flat R3

k = −1: 3-dimensional hyperboloid with negative curvature (topologically R3)

k = 1: 3-sphere with positive curvature

(There are other possibilities obtained by identifying points in one of these models
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(e.g., a torus or cylinder for k = 0). This would not change the dynamics for
A(t).)

4. Calculate the Einstein tensor. The only component we need to look at in
detail is (12.50),

Gtt = 3

[

(

A′

A

)2

+
k

A2

]

.

5. Find the form of the stress tensor. (Here is the first part that requires my
commentary.) By symmetry, T must have the perfect-fluid form (4.36) in a
comoving local inertial frame:

Tαβ =







ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p






.
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For a metric of the form (12.6), this implies that

T 00 = ρ, T jk = p gjk.

(One way of seeing this is to take the covariant special-relativistic formula
(4.37),

Tαβ = (ρ+ p)UαUβ + pηαβ ,

replace ηαβ by gαβ to generalize to curved space, and set U0 = (1, 0, 0, 0)
since the coordinate frame is comoving with the matter (i.e., g0j = 0, g00 =
−1).) Note that we have made no assumption on how ρ and p are related
to each other (an equation of state). Therefore, the formulation so far is
applicable to any kind of matter: cold dust, radiation, hot massive particles,
or an exotic nonclassical fluid of some kind.

6. Examine the Einstein equation, Gαβ = 8πTαβ . The off-diagonal compo-
nents are 0 = 0. The three spatial diagonal components are all the same,
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and they are related to the temporal diagonal component by the Bianchi
identity (whose detailed investigation I am postponing). Therefore, there is
only one independent component. It turns out that the spatial equation is
essentially the time derivative of the temporal one, and hence contains less
information, since a constant of integration is lost. The evolution of the uni-
verse is therefore determined by the equation Gtt = 8πTtt , which is (12.54),
or

(

A′

A

)2

= − k

A2
+

8π

3
ρ

— together with an equation of state to fix the behavior of ρ(t).

7. At this point the Bianchi identity (or local energy conservation law) becomes
useful. Schutz states it as (12.21)

d

dt
(ρA3) = −p d

dt
(A3),
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and pronounces it “easy to show”. Let us show it. The conservation law is
Tµν

;ν = 0. Only the time component (µ = 0) is nontrivial in this spatially
homogeneous model. That component is

0 = T tν
;ν

= T tν
,ν + T tαΓν

αν + Γt
ανT

αν

= T tt
,t + T ttΓν

tν + Γt
ttT

tt +
3
∑

j=1

Γt
jjT

jj

(where I have used the fact that T is diagonal). Now recall an identity (6.40)
for the summed Christoffel symbols:

Γα
µα = (

√−g),µ/
√−g.
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This lets us calculate

Γν
tν = (

√−g)t/
√−g

=
∂

∂t
ln(
√−g)

=
1

2

∂

∂t
ln(−g)

=
1

2

∂

∂t
ln[A6(1− kr)−1r4 · (fn. of angles)]

=
1

2
· 6A5A′ ·A−6

= 3
A′

A
,
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Γt
tt =

1

2
gtt(gtt,t + gtt,t − gtt,t)

= − 1

2
gtt,t

= 0,

and if j is a spatial index,

Γt
jj =

1

2
gtt(gtj,j + gjt,j − gjj,t)

=
1

2
gjj,t

=
A′

A
gjj .

Therefore,
3
∑

j=1

Γt
jjg

jj = 3
A′

A
.
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So the equation becomes

0 =
dρ

dt
+ 3

A′

A
ρ+ 3

A′

A
p

=
1

A3

[

d

dt
(ρA3) + p

d

dt
(A3)

]

,

which immediately implies the assertion.

8. One uses this conservation law and an equation of state to eliminate p. (For
now, assume the cosmological constant Λ is zero.)

(A) For “cold” matter (or “heavy” particles), p = 0 and hence ρA3 =
constant.

(B) At the opposite extreme, where all the matter is radiation (photons
or neutrinos) or so hot that the rest masses of the particles can be
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neglected, we have p = 1
3ρ and hence (after a step of calculus) ρA4 =

constant.

Thus we have the famous prediction that as the universe expands, the density of
matter falls off as A−3 but that of radiation falls off as A−4. (The latter can be
explained as follows: Not only does the volume grow cubically, so that the number
density of photons goes as the size to the −3 power, but also the wavelength of
a photon grows linearly, cutting another power of A from the energy density.)

9. Solve the Einstein equation (12.54) (with ρΛ = 0), getting the famous deceler-
ating expansion from a Big Bang start. (Of course, there are also contracting
solutions.)

10. Relate the expansion to observable quantities, the Hubble constant and the
deceleration q (Sec. 12.23). (For more detail on this (and other steps) than
Schutz and I can provide, see the book of M. Berry, Principles of Cosmology
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and Gravitation.)

11. Mix in some particle physics and statistical mechanics to relate the expan-
sion to thermal background radiation, decoupling of matter from radiation,
chemical element production, galaxy formation, etc. (Sec. 12.4).

12. Worry about what happens at very early times when the classical theory of
matter (and of gravity?) must break down. As we go backwards, we expect
to encounter

a) phase transitions in field theories of elementary particles; inflation of the
universe;

b) creation of particles by the gravitational field (Parker et al.);

c) quantum gravity; superstrings; ???.
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Cosmological equations and solutions in more detail

At the cost of some repetition, I shall now go over RW cosmology in greater
generality (allowing a cosmological constant and more general matter sources)
and with a more systematic presentation of the starting equations.

The Einstein equation with Λ term is

Gµν − Λgµν = 8πGTµν .

Its 00 component is
(

Ȧ

A

)2

+
k

A2
− Λ

3
=

8πG

3
ρ, (1)

and all the jj components are equivalent to

2Ä

A
+

(

Ȧ

A

)2

+
k

A2
− Λ = 8πGp. (2)
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We also know that the only nontrivial component of the conservation law,
∇µT

µν = 0, is
d

dt
(ρA3) = −p d

dt
A3. (3)

The first task is to show that these 3 equations are not independent.

Differentiate (1):

2Ȧ

A





Ä

A
−
(

Ȧ

A

)2


− 2k

A2

Ȧ

A
=

8π

3
ρ̇.

But (3) is equivalent to

ρ̇A3 + 3ρA2Ȧ = −3pA2Ȧ, or ρ̇ = −3 Ȧ

A
(ρ+ p).
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So we get

2Ȧ

A





Ä

A
−
(

Ȧ

A

)2

− k

A2



 = −8π Ȧ

A
(ρ+ p).

Therefore, either Ȧ = 0 (a special situation to which we’ll come back later) or

Ä

A
−
(

Ȧ

A

)2

− k

A2
= −4π(ρ+ p). (4)

Eliminate p from (2) and (4): 1
2 (2)− (4) is

3

2

(

Ȧ

A

)2

+
3

2

k

A2
− Λ

2
= 4πρ.
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But this is just (1) again, so (2) adds nothing to (1) and (3). (1) is effectively
a first integral of (2) (which adds information corresponding to an integration
constant). One notes that (3) is a bit nicer than (2) (simpler and more general),
so it is standard to adopt (1) and (3) as the basic equations. However, we also
need some information about the physics of the matter, in the form of an equation
of state.

So, let’s start over with three ingredients:

1. Equation of state,

p = f(ρ)

for some function f . (It tells how p depends on ρ.)

2. Conservation law,
d

dt
(ρA3) = −p d

dt
A3.
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(It tells how ρ depends on A.)

3. Einstein equation,
(

Ȧ

A

)2

+
k

A2
− Λ

3
=

8πG

3
ρ.

(It tells how A depends on t.)

Thus we have a closed system of equations to tell how everything depends on t.

To start the solutiom. substitute the state equation into the conservation
law:

d

dt
(ρA3) = −f(ρ) d

dt
A3.

Define u = A3 and use u as the independent variable, so that

d

dt
=

du

dt

d

du
.
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(This makes sense during any epoch through which A(t) is monotonic.) We find

du

dt

d

du
(ρu) = f(ρ)

du

dt
,

and after a few more steps of algebra,

dρ

du
= − ρ+ f(ρ)

u
.

This is an elementary first-order separable ODE, with solution

− ln u+K =

∫

dρ

ρ+ f(ρ)
. (5)

To go further one needs a definite equation of state. Suppose that it has the
special form

f(ρ) = wρ. (6)
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Then

− ln u+K =
ln ρ

1 + w
,

or

ρ = e(1+w)(− lnu+K) = Cu−(1+w) ,

or

ρ = Ca−3(1+w). (7)

Now consider various particular cases of (6):

• Radiation (massless particles): w = 1
3 — that is,

Tα
β =







−ρ 0 0 0
0 ρ

3 0 0
0 0 ρ

3
0

0 0 0 ρ
3






.
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(Note that the trace Tα
α equals 0 in this case.) According to (7),

ρ ∝ A−4.

• Dust (very massive particles): w = 0, p = 0. In this case

ρ ∝ A−3.

The physical reason for the difference in behavior is that for dust, the energy
is essentially just the (conserved) mass, so the energy density is inversely
proportional to the volume, whereas for photons the wavelength is stretching
out, causing an additional factor of A−1.

• The curvature term, k
A2 , acts like a type of fictitious matter with w = −1

3 .

• The cosmological term, −Λ
3 , acts like a type of fictitious matter with w = −1

(that is, Tαβ = Λ
8πG gαβ , which is independent of t). In the observationalist’s
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cautious approach to cosmological acceleration, one says that the dark energy
has a stress tensor with p = wρ where w ≈ −1. (The mathematician should
be equally cautious and note that lots of our intermediate steps are nonsense
when 1 + w = 0; but you can go back and see that the starting equation
(before (5)) is still satisfied.)

Accordingly, we shall now move the curvature and cosmological terms (if
they are present) to the right-hand side of the Einstein equation and treat them
mathematically as types of matter.

We can now easily solve Einstein in the special case where only one type of
matter is present (or at least one type dominates).

(

Ȧ

A

)2

=
8πG

3
ρ = CA−3(1+w).
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Therefore, Ȧ =
√
C A−(1+3w)/2, so

√
C t+K =

∫

A
1+3w

2 dA =
2

3(1 + w)
A

3(1+w)
2 ,

or
A

3(1+w)
2 = γt+ κ.

We can choose the origin of time so that the arbitrary constant κ is 0. Thus (for
a new constant C)

A = (γt)
2
3

1
1+w = Ct

2
3(1+w) . (8)

Let’s examine this result for the four classic cases.

• Radiation (with flat 3-space, k = 0): w = 1
3 , A ∝ t1/2.

• Dust (with k = 0): w = 0, A ∝ t2/3.
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• Negative curvature (k = −1): w = −1
3 , A ∝ t. This solution, called theMilne

universe, is actually a piece of flat space-time in hyperbolic coordinates.

• Cosmological constant: w = −1. Formula (8) fails, but we can go back to
an earlier equation to see that Ȧ =

√
C A, hence (H ≡

√
C)

A = eHt.

This solution is called the de Sitter universe (or a piece of it) with Hubble
constant H.

If the universe contains more than one type of matter, or the equation of
state is nonlinear, it is harder, perhaps impossible, to find exact solutions. Of
course, that is no obstacle in serious research, since systems of ODEs are routinely
solved by computer. (The fact that A can vary over many orders of magnitude
from the big bang to today means that the numerical analysis is not entirely
trivial.) Much can be learned, as in elementary classical mechanics, by deducing
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the qualitative behavior of the solution. In general the Einstein equation will
have the form

(

Ȧ

A

)2

= ρ(A),

where ρ is typically a sum of terms corresponding to matter of various types
(including curvature and Λ). This equation is quite analogous to the classical
energy law for a particle in a potential,

1
2 Ȧ

2 = E − V (A),

for which we know how to classify solutions as bouncing back and forth in a
potential well, passing over a potential barrier, etc.

Usually one term in ρ is dominant in any particular epoch, and the solution
can be approximated by one of the power-law behaviors we found earlier. Let
t = 0 at the initial singularity. When t is very small, matter (in particular,
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radiation) dominates over spatial curvature, so one has a t1/2 model. (When a
k = 1 curvature term is included, the exact solution is a cycloid, which clearly
demonstrates the t1/2 behavior at the start.) Because radiation density goes as
A−4 and heavy matter density goes as A−3, matter eventually comes to dominate,
and we have a period with A ∝ t2/3. Still later the spatial curvature becomes
important and can make the difference between a universe that expands forever
and one that recollapses. For ordinary matter one must have ρ > 0 and 0 ≤ p ≤ ρ.
If Λ = 0, one can then show that recollapse occurs if and only if k > 0. Finally,
if there is a cosmological constant and the universe becomes large enough, the
Λ term will eventually win out over all the others, presumably producing the
accelerated expansion that we now observe.

I promised to say something about what happens if Ȧ = 0. We are not
concerned here with a case where one of the generic solutions has Ȧ = 0 at
an isolated time; the solution can be extended through such a point (usually
changing from expanding to contracting) even though our derivation technically
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breaks down there. Are there solutions with A equal to a constant? One quickly
sees that that would place constraints on ρ, p, k, and Λ. Most of the solutions
are either flat space-time or otherwise uninteresting. The most interesting one is
called the Einstein universe: It has

ρ =
C

A3
=

1

4πGA2
, p = 0, k = 1, Λ =

1

A2
.

(See Schutz, Exercise 12.20.) In the early days of general relativity, it was taken
very seriously (“Einstein’s greatest blunder”).

The present observational situation

At this point in the original notes I recommended and summarized a re-
view article, “The case for the relativistic hot big bang cosmology”, by P. J. E.
Peebles, D. N. Schramm, E. L. Turner, and R. G. Kron, Nature 352, 769–776
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(1991). At the time, it was more up to date than the first edition of Schutz’s
book; of course, that is no longer true, and Secs. 12.2 and 12.4 provide some
newer information. Since 1991 there has been considerable progress, notably the
firm discovery of the acceleration of the universe, which provides evidence for a
nonzero cosmological constant (or, more cautiously, “existence of dark energy”).
For the state of the art after 5 years of analysis of WMAP data (2008), see
http://www.math.tamu.edu/~fulling/WMAP/html on our Web page.
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Spherical Solutions: Stars and Black Holes (Chapters 10 and 11)

We will seek solutions (gµν or ds2) of Einstein’s equation that are

1. static:

a. time-independent (in some coordinate system);

b. time-reversal invariant (no dt dxj terms in ds2).

2. spherically symmetric: angular part of ds2 is

r2 dΩ2 ≡ r2(dθ2 + sin2 θ dφ2).

3. asymptotically flat: the geometry in some sense approaches that of flat
space-time as r →∞.
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Remarks:

(1) Here we have defined r so that 2πr is the circumference of the spherical
surface at fixed r. When the space is not flat, r is not necessarily a radial
proper distance — that is, the dr2 term will turn out to be f(r) dr2 with
some nontrivial function f . You could equally well define a proper radial
coordinate ρ by

dρ2 = f(r) dr2 ; ρ ≡
∫

f(r)1/2 dr,

but then the r2 multiplying dΩ2 would be a nontrivial function of ρ. (You
might want to make ρ unique by choosing the lower limit of the integral to
be 0 (so “ρ is the distance from the center”); but we should leave open the
possibility that there is no point where r = 0 — in fact, something like that
happens for a black hole.)
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(2) A space-time that satisfies 1a but not 1b is called stationary. Systems that
are rotating at constant angular velocity are of that type. (It turns out that
they also violate the spherical symmetry condition, being symmetrical about
the axis of rotation only.)

The most general metric satisfying the three symmetry conditions is

ds2 = −e2Φ(r) dt2 + e2Λ(r) dr2 + r2 dΩ2.

(The exponential notation incorporates what we know about the signs of the gµν
and turns out to simplify the equations of motion somewhat. The factor 2 is
natural because, as we just saw, there is often a reason to take square roots of
metric components.)

Φ(r) has an important observational significance. If a photon is emitted at
radius r and observed far away, its frequency will suffer a red shift

λreceived − λemitted

λemitted
≡ z = −g00(r) + g00(∞) = e−Φ(r) − 1.
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The reasoning is essentially the same as in Sec. 5.1 (Schutz says “Chapter 2” but
he doesn’t mean it).

The components of the Einstein tensor for such a metric have been calcu-
lated in (10.14–17) (and homework). We also have the conservation law (Bianchi
identity), (10.27),

(ρ+ p)
dΦ

dr
= − dp

dr
,

which has the local physical interpretation of hydrostatic pressure balance in the
star. As in the cosmological theory, it pays to substitute this equation for one of
the Einstein equations, say the one for Gθθ .

The exterior Schwarzschild solution

Assume for now that Tµν = 0, as it should be (approximately) outside a star
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(at least until we run into another star). Then the four Einstein equations are

0 = G00 =
1

r2
e2Φ

d

dr

[

r
(

1− e−2Λ
)]

,

0 = Grr = − 1

r2
e2Λ
(

1− e−2Λ
)

+
2

r
Φ′,

0 = Gθθ = r2e−2Λ

[

Φ′′ + (Φ′)2 +
Φ′

r
− Φ′Λ′ − Λ′

r

]

,

0 = Gφφ = sin2 θ Gθθ .

Obviously the φφ equation is redundant. In fact, the θθ equation itself will
be automatic (Bianchi identity!), because the conservation law is tautologically
satisfied in vacuum.

The trick to solving the two remaining equations is to define

m(r) =
r

2

(

1− e−2Λ
)

.
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(It will turn out that m(r) can be thought of as the mass inside the ball of
radius r, but not in the usual sense of a straighforward integral of ρ.) Inverting
this equation gives

grr(r) = e2Λ(r) =

(

1− 2m(r)

r

)−1

.

But now the content of the 00 Einstein equation is that m(r) = constant in the
vacuum region! Furthermore, the rr equation can be written

dΦ

dr
=

m

r(r − 2m)
.

Its solution that vanishes at infinity is

Φ(r) =
1

2
ln

(

1− 2m

r

)

, or − g00(r) = e2Φ(r) = 1− 2m

r
.
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Thus, finally, we have arrived at the famous Schwarzschild solution,

ds2 = −
(

1− 2m

r

)

dt2 +

(

1− 2m

r

)−1

dr2 + r2 dΩ2.

Almost equally famous is –

Birkhoff’s theorem: The only spherically symmetric, asymptotically flat,
vacuum solution is the Schwarzschild solution.

Note that the static condition is not necessary as a hypothesis in Birkhoff’s
theorem! Even if something wild is going on inside a star, the gravitational
field outside is still Schwarzschild, provided that the phenomenon is spherically
symmetric. An equivalent statement is that there is no monopole gravitational
radiation. The same is true of electomagnetic radiation: A radially pulsating
electric charge distribution has nothing but a Coulomb field outside. The most
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basic electromagnetic radiation is dipole (spherical harmonics with l = 1), cor-
responding to opposite charges with varying separation (or a single charge with
oscillating position). Since all masses are positive, even that possibility does not
exist for gravitational waves. The most basic gravitational radiation is quadrupole
(spherical harmonics with l = 2), corresponding to a change of shape of a matter
distribution (say from prolate to oblate). (See Sec. 9.3; also Figs. 9.1 and 9.2,
but interpreted as referring to the source, not the detector.)

Inside a star

Recall that Tµν = pgµν + (ρ + p)UµUν , where U is the unit vector in the
time direction, so T00 = −ρg00 . Thus

T00 = ρe2Φ, trr = pe2Λ, Tθτ = r2p, Tφφ = r2 sin2 θ p.
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Returning to the Einstein equations, therefore, one sees that the 00 equation
amounts to

dm(r)

dr
= 4πr2ρ, (A)

and the rr equation to

dΦ(r)

dr
=

m(r) + πr3p(r)

r(r − 2m(r))
.

But dΦ/dr also appears in the conservation law, which can be used to rewrite
the rr equation as the Tolman–Oppenheimer-Volkov equation,

dp

dr
= −(ρ+ p)

m+ 4πr3p

r(r − 2m)
. (B)

As usual, one needs to assume an equation of state,

p = p(ρ) (C).
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The system (A)–(B)–(C) has a unique solution once two constants of integration
are specified. One of these is the initial condition m(0) = 0, without which
the solution would be singular at the origin (see p. 264 for complete argument).
The other is the central pressure, p(0) (or, alternatively, the central density,
ρ(0)). Thus, for a given equation of state, the spherically symmetric static stellar
models form a one-parameter sequence. Usually the solution can’t be written
down analytically, but finding it is a standard project in numerical analysis.

The Schwarzschild horizon (Section 11.2)

Now we return to the vacuum Schwarzschild solution and ask what would
happen if the “star” is so small that the factor 1− 2m/r can become zero in the
region where that solution applies. (We celebrate its importance by changing m
to a capital M .) At that point (r = 2M) the metric expression is singular (at
least in the coordinates we’re using, and if r becomes smaller than 2M , the signs
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of the time and radial metric components change. We must ask whether it makes
any sense to continue the solution inward in this way. The answer is “yes”, but
the metric expression needs to be interpreted carefully.

Let us distinguish three physical situations:

1. An ordinary star, but sufficiently dense that general relativity is signifi-
cant (e.g., a neutron star). Then as explained in Chapter 10, the exterior
Schwarzschild solution

ds2 = −
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2 + r2dΩ2

applies in the region where there is no matter. This region necessarily ends
when r goes below some minimum value greater than 2M . Inside that radius
the geometry is described by some other spherically symmetrical metric,
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determined by Einstein’s equation with a matter source. (Sometimes that
metric is called the interior Schwarzschild solution.)

2. The maximal analytic extension of the Schwarzschild metric up to and
through the coordinate surface r = 2M . This describes an empty space
that, at a fixed time, resembles the “wormhole” drawing in Schutz Fig. 10.1
(which was on the cover of the first edition of the book). That is, there is a
“second sheet” of the universe, where r begins to increase again. Moreover,
in the region r < 2M , r and t exchange roles, so that r is the time coordi-
nate. In this region the geometry is not time-independent: The “neck” of the
“wormhole” grows from nothing and then shrinks to nothing within a finite
proper time. There is a genuine singularity at r = 0, where the curvature
becomes infinite and the manifold cannot be extended. (In fact, there are
two of these, one in the future and one in the past.) However, there is no
true singularity at r = 2M . (That surface is highly interesting, nonetheless;
it is called the horizon and will be discussed extensively hereafter.) Such a
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maximal black hole is not expected to exist in the real world (except possibly
at the quantum scale, where it would presumably be modified).

3. A collapsing (later, collapsed) star, such as is expected to be the fate of a
burned-out star too massive to become a white dwarf or neutron star. At
early times, this resembles a static star. At late times, it resembles part of
the maximal extension. The Schwarzschild metric is applicable only outside
the collapsing matter, but the latter eventually shrinks below the radius 2M .
This empty Schwarzschild region does not include the second sheet of the
wormhole, nor the past singularity, but it does include a part of the region
extending from the horizon (r = 2M) to the future singularity (r = 0). This
scenario is the black hole of the realistic astrophysicist; such things may
actually exist and cause observable phenomena.

What exactly is happening at r = 2M? Detailed investigation reveals the
following about the Schwarzschild coordinate system:
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1. As r → ∞, the metric of course approaches that of flat (Minkowski) space
in spherical coordinates. In that limit, therefore, the coordinate system can
be thought of as a standard inertial coordinate system in polar form.

2. As r → 2M , however, these coordinates have more in common with the
hyperbolic polar coordinates that we have discussed several times in connec-
tion with uniform acceleration. (The reason for this analogy is clear: Near a
massive body, a point at rest at a constant radius is accelerating; if it were
in free fall, its r would be decreasing!) After the two angular coordinates are
suppressed, the coordinate r measures the distance of a point from a single
central point. (When the angles are restored, the central point, like every nor-
mal point in the (r, t) plane, represents an entire sphere in the 4-dimensional
manifold. Here “normal” excludes r ≤ 0 and r = 2M .) Translation in t
represents a motion around that point like a Lorentz transformation, rather
than a conventional time translation.
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In hyperbolic coordinates in Minkowski space, there is a coordinate singu-
larity at χ = 0 just like the one at r = 2M here. The singularity can be removed
by returning to Cartesian coordinates:

t = r sinhχ,

x = r coshχ.

(We can also introduce hyperbolic coordinates inside the future light cone by

t = r coshχ,

x = r sinhχ.

This is the analogue of the region 0 < r < 2M in the black hole.) Analogous
coordinates should exist in the case of the black hole (including the case of the col-
lapsed star, outside the collapsing matter). They are called Kruskal coordinates.
Although they are analogous to Cartesian coordinates in Minkowski space, they
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are not adapted to symmetries of the metric (other than rotations): the geometry
is not invariant under translation in Kruskal time. The coordinate transforma-
tion is given in Schutz (11.65–66) and the resulting line element in (11.67); note
that the latter cannot be written explicitly in terms of the Kruskal coordinates
themselves, but only implicitly through r.

Although Kruskal coordinates are hard to work with algebraically, they are
easy to understand geometrically if we introduce some intermediate coordinate
systems called null coordinates. Note first that we are analogizing the radius-
time plane in the black hole space-time to the 2-dimensional Minkowski space
— suppressing the angles in the one case and two transverse dimensions in the
other. In Minkowski space with coordinates (x, t), let’s let

U = x− t, V = x+ t.

It is well-known that this converts the two-dimensional wave operator ∂2

∂x2 − ∂2

∂t2

into a multiple of ∂2

∂U ∂V , which is easily solved (d’Alembert’s solution). In semi-
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Riemannian geometry terms, it converts the line element ds2 = −dt2 + dx2 into
dU dV . The lines of constant U or constant V are diagonal lines on the (x, t)
diagram; they are photon paths! Thus such a coordinate system exhibits the
physical geometry of a (effectively two-dimensional) space-time very directly.

Now consider, in the quadrant U > 0, V > 0, the further transformation

U = eu, V = ev.

Then ds2 = eu+v du dv, so the lines of constant coordinate are still the same null
lines, just labelled differently. Next, rediagonalize by reversing the Cartesian-to-
null transformation:

u = ξ − τ, v = ξ + τ .

ds2 = e2ξ(−dτ 2 + dξ2).

Finally, let
ξ = ln r, τ = χ.
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Composing all the transformations, we see that

x =
1

2
(U + V ) =

1

2
(eu + ev) =

1

2
eξ(e−t + et) = r coshχ,

t = r sinhχ.

So we have recovered the hyperbolic coordinates. Incidently, the metric in that
system is

ds2 = −r2 dt2 + dr2,

which looks vaguely Schwarzschildian, does it not?

The relation between Schwarzschild and Kruskal coordinates is identical to
this, except for the function relating r to ξ. (The coordinate analogous to ξ is
called the tortoise coordinate because it sends the value r = 0 to ξ = −∞, making
it appear to take infinitely long to reach, as in Zeno’s paradox. More about this
below.) Similar coordinate transformations appear in other contexts, notably in
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de Sitter space when one follows a natural static coordinate system “quarter way
around the world”. Note that Schutz uses (u, v) for the analogue of (x, t), not for
the coordinates that I (following most relativists) have called (u, v) (and particle
theorists call (x−, x+), up to a factor

√
2).

It is also possible to perform nonlinear transformations on null coordinates
so as to map “infinity” into finite null lines. The fictitious light cones at infinity
introduced in this way are called I+ and I−. In studying the wave or field
equations of massless particles, it is convenient to prescribe initial data there.

It is important to make the distinction between the line r = 2M in a
Schwarzschild diagram (Fig. 11.10) and the line r = 2M , t = +∞ in a Kruskal
diagram (Fig. 11.11). The former line shrinks to only one point on the Kruskal
diagram. The latter line is the (future) horizon. It is crucial to understand that
locally there is nothing out of the ordinary about the geometry or the physics
there, at least if M is large so that the curvature is still fairly small at r = 2M .
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Generally speaking, an horizon is defined only globally, in terms of its relation-
ship to a singularity in the future. It is the boundary between points from which
one can escape to infinity (I+) without exceeding the speed of light, and points
from which one is doomed to fall into the singularity instead. Incidentally, the
Schwarzschild singularity is anisotropic: the tidal forces are compressive in two
dimensions and stretching in the third (along the singularity, drawn as a spacelike
hyperbolic curve on the Kruskal diagram). A later infall of matter may relocate
the horizon without changing the geometry “here and now”.

The formula for the tortoise coordinate is

r∗ ≡
∫
(

1− 2M

r

)−1

dr = r + 2M ln
( r

2M
− 1
)

.

Then

ds2 =

(

1− 2M

r

)

(−dt2 + dr∗2) + · · · ,
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where r is a function of r∗ (implicitly defined as the inverse of the previous
formula). If we are looking at the space-time outside a collapsing star, whose
surface r(t) crosses the horizon at some finite Kruskal time, then it can be shown
that for large t the path of the surface looks asymptotically straight and diagonal
on the (r∗, t) diagram; more precisely,

r∗ ∼ −t+ Ae−t/2M +B ∼ − ln

(

cosh
t

2M

)

.

For Schwarzschild and Kruskal diagrams in the scenario of matter collapsing to
a black hole, see Fig. 4 of Davies and Fulling, Proc. Roy. Soc. London A 356,
237–257 (1977).

The Ergosphere (Section 11.3)

A rotating (Kerr) black hole in the most common (Boyer–Lindquist) coordi-
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nate system has a metric of the form

ds2 = −(mess)dt2 − (mess)dt dφ+ (mess)dφ2 + (mess)dr2 + (mess)dθ2

(see Schutz (11.71) and Penrose–Floyd p. 2). The (mess)s are independent of t
and φ, so the energy, −pt, and angular momentum, pφ, of a particle are conserved.
(Recall that p0 is normally a negative number in our metric signature, since U0

is positive.)

Suppose the hole were replaced by a spinning flywheel. A particle could hit
it and be batted away with more energy than it had coming in. This does not
contradict conservation of energy, because there is a nontrivial interaction with
the flywheel and the wheel will slow down slightly by recoil. The Penrose process
is an analog that allows energy to be extracted from the Kerr black hole.

As in the Brans–Stewart cylinder universe, there is no global rotating Lorentz
frame. (This is true of any rotational situation in relativity — it has nothing to
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do with horizons or even with gravity.) The best one can do is to construct a
rotating frame that is related to local Lorentz frames by Galilean transformations
(i.e., leaving the hypersurfaces of constant time fixed).

The model

Here I present a simple model related to the Kerr black hole in somewhat
the same way that the uniformly accelerated (Rindler) frame is related to the
Schwarzschild black hole. Consider the line element

ds2 = −dt2 + (dx+ V (y) dt)2 + dy2.

(We could add a third spatial dimension, dz, but it adds nothing conceptually so
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I’ll omit it.) That is, the metric tensor is

gµν =





−1 + V (y)2 V (y) 0
V (y) 1 0
0 0 1



 ,

where the order of the coordinates is t, x, y. Since gµν is independent of t and x,
−pt and px are conserved. Notice that something strange is going to happen
when |V (y)| ≥ 1, because then gtt changes sign.

Consider now the Galilean transformation

t = t′, x = x′ − V0t
′, y = y′,

with inverse

t′ = t, x′ = x+ V0t, y′ = y.
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Then dx = dx′ − V0 dt
′ implies

ds2 = −dt′2 + [dx′ + (V (y)− V0)dt
′]2 + dy′2.

In particular, in a region where V (y) = constant, choose V0 = V (y) ; then

ds2 = −dt′2 + dx′2 + dy′2

— space is flat!

Suppose that V (y) = 0 for y ≫ 0 (“outside”), so the space is flat and the
unprimed coordinates are inertial there; and that V (y) = V0 for y ≪ 0 (“inside”),
so the space is flat and the primed coordinates are inertial there. In the Kerr–
Boyer–Lindquist situation, r is analogous to y and φ is analogous to x. Like the
Schwarzschild black hole, the Kerr black hole has a horizon at some small r ≡ r+
(and a singularity inside that), but that does not concern us today. We are
interested in a region r+ < r < r0 called the ergosphere. (See Schutz p. 312 for
formulas for r+ and r0 ; r0 is where gtt = 0, and r+ is where grr = ∞.) In our
model, the ergosphere is the inside region, −∞ < y ≪ 0.
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Basis vectors and basis change matrices

Let us look at the unprimed basis vectors in primed terms; in other words,
look at the (natural interior extension of the) inertial frame of an observer in the
exterior region from the point of view of an observer “going with the flow” in the
interior region. The change-of-basis matrices are

Λµ
ν′ =

∂xµ

∂xν′
=





1 0 0
−V0 1 0
0 0 1



 , Λν′

µ =
∂xν′

∂xµ
=





1 0 0
V0 1 0
0 0 1



 .

Recall that the columns of the second matrix are the basis tangent vectors ~et ,
etc., and the rows of the first matrix are the basis one-forms dual to them. The
important thing to note is that if V0 > 1, then ~et , the time-translation vector,
is spacelike in the ergosphere! (On the other hand, ∇t, the normal vector to the
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surfaces of constant t, is still timelike.)

x′

t′

.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
..←light cone

............................
............................

.............................
............................

.............................
.............................................
...........................

................................................................................................... ........................................

.............

.............

.............

.............

..................................

...........................

.................................................................................................................................................................................
..........
.............
.............
.

−−
−−
−−
−

−−−−−−−−−−−−−−−−

dr

dt
=

(

1
V0

)

dr

dx
=

(

0
1

)

∇t = (1, 0)

∇x = (−V0, 1)

Similarly, in Kerr, ~et in the ergosphere leans over and points primarily in
the φ direction. (In any rotating system in GR, it will lean slightly; this is called
the Lense–Thirring frame-dragging effect, or gravitomagnetism; see Schutz pp.
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310–311. But usually it remains timelike. An ergosphere is a region where it
leans so far it becomes spacelike.)

Velocity

Let’s use Λ to transform the 4-velocity vector of a particle:

~v =





1 0 0
−V0 1 0
0 0 1



~v′ =





vt′
vx′ − V0vt′

vy′



 .

Now suppose that the spatial velocity is 0 in the unprimed frame; then

vx′ = V0vt′ .

But if |V0| > 1, this equation would say that ~v is spacelike, which is impossible
for a physical particle. Conclusion: A particle inside the ergosphere cannot be
motionless as viewed by an observer outside.
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Momentum and geodesic equations

Because the metric is nondiagonal, the canonical momentum is not propor-
tional to the velocity. The Lagrangian for particle motion is

L = 1
2 [(V (y)2 − 1)ṫ2 + 2V (y)ṫẋ+ ẋ2 + ẏ2].

Therefore,

py =
∂L

∂ẏ
= ẏ,

dpy
dt

=
∂L

∂y
= V V ′ṫ2 + V ′ṫẋ = V ′ṫpx ,

px =
∂L

∂ẋ
= V ṫ+ ẋ = γ(V + v),

dpx
dt

=
∂L

∂x
= 0,

pt =
∂L

∂ṫ
= (V 2 − 1)ṫ+ V ẋ,

dpt
dt

=
∂L

∂t
= 0.
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We can further reduce

pt = −ṫ+ V (V ṫ+ ẋ) = −ṫ+ V px .

Thus ṫ = −pt + V px , and we can write

ÿ =
dpy
dt

= V ′(y)px[V (y)px − pt],

which is the only nontrivial equation of motion. (Recall that px and pt are
constants.) Note that py = constant whenever the particle is in either of the
asymptotic regions.

Energy extraction

Consider a particle originating outside with

pt = p0 < 0, px = 0, py = −k < 0.
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Since the inertial frame outside is the unprimed one, pt < 0 is required for a
physical particle. The condition py < 0 assures that the particle will fall in. In
the primed frame these momentum components are the same:

~p ′ = (p0, 0, py)





1 0 0
−V0 1 0
0 0 1



 = (p0, 0, py) = ~p.

In general, py will change with time, but px and pt are conserved. Let’s say that
py = −K < 0 when the particle is inside.

Now suppose that after it enters the ergosphere, the particle decays:

~p = ~p1 + ~p2 .

(This is a vectorial equation, hence valid in either frame.) Suppose also that

p′2y = +K > 0, so p′1y = −2K < 0.

253



Thus particle 1 gets swallowed by the “black hole”, but particle 2 reemerges. In
exterior coordinates

~p1 = (p′1t, p
′
1x, p

′
1y)





1 0 0
+V0 1 0
0 0 1



 = (p′1t + V0p
′
1x, p

′
1x, p

′
1y).

Note that p1t = p′1t + V0p
′
1x can be positive if (and only if) |V0| > 1 (since

|p′1x| < |p′1t|). (This is not a physical contradiction, since the unprimed frame
is not inertial at points inside.) Now do the same calculation for the escaping
particle:

~p2 = (p′2t, p
′
2x, p

′
2y)





1 0 0
+V0 1 0
0 0 1



 = (p′2t + V0p
′
2x, p

′
2x, p

′
2y).

Here p2t = p′2t+V0p
′
2x can be less than p0 (i.e., |p2t| > |p0|) if and only if |V0| > 1.

But p2t is conserved, so it is the physical momentum of particle 2 after it emerges
from the ergosphere.
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Conclusion: Mechanical energy has been extracted from the “black hole”.
Total energy is conserved, because the energy of the hole has been reduced by
the amount |p1t| = |p0|, the negative energy carried in by particle 1. In the
true rotating-black-hole case, the angular momentum is reduced similarly (corre-
sponding to the conserved quantity px in the model).

There is an analogue of the Penrose process for waves, called superradi-
ance: For waves of certain values of angular momentum (angular quantum num-
ber or separation constant), the scattered wave amplitude exceeds the incident
amplitude. In quantum field theory this effect leads to production of particle-
antiparticle pairs by the rotating black hole, in analogy to something called the
Klein paradox for quantum particles in a strong electric field. (This is different
from Dicke superradiance in atomic physics.)
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