Math 460

Problem 2.19 Solution Part (a): Considering a uniformly accellerated body, we must show that in the MCRF, the accelleration four-vector takes the form $\vec{a}=$ (0 , const.). Following the hint (problem 21), let us consider a body whose motion is parameterized

$$
\begin{equation*}
t(\tau)=\frac{1}{\alpha} \sinh (\alpha \tau), \quad x(\tau)=\frac{1}{\alpha} \cosh (\alpha \tau) \tag{1}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\vec{u}=\left(\frac{d t}{d \tau}, \frac{d x}{d \tau}\right)=(\cosh (\alpha \tau), \sinh (\alpha \tau) \tag{2}
\end{equation*}
$$

so that

$$
\begin{equation*}
\vec{u} \cdot \vec{u}=-\cosh ^{2}(\alpha \tau)+\sinh ^{2}(\alpha \tau)=-1 \tag{3}
\end{equation*}
$$

So τ is the proper time parameter. Computing the acceleration,

$$
\begin{equation*}
\vec{a}=\left(\frac{d^{2} t}{d \tau^{2}}, \frac{d^{2} x}{d \tau^{2}}\right)=(\alpha \sinh (\alpha \tau), \alpha \cosh (\alpha \tau)) \tag{4}
\end{equation*}
$$

This has magnitude

$$
\begin{equation*}
\vec{a} \cdot \vec{a}=-\alpha^{2} \sinh ^{2}(\alpha \tau)+\alpha^{2} \cosh ^{2}(\alpha \tau)=\alpha^{2} \tag{5}
\end{equation*}
$$

confirming that this really is uniform acceleration. Now we need a Lorentz transformation to the MCRF. The coefficients for this Lorentz transformation can be read off from the components of \vec{u} :

$$
\begin{equation*}
\vec{u}=(\gamma, \gamma v) \tag{6}
\end{equation*}
$$

Thus $\gamma=\cosh (\alpha \tau)$ and $\gamma v=\sinh (\alpha \tau)$. Now transforming \vec{a} :

$$
\begin{align*}
\vec{a}_{M C R F}= & \left(\gamma a_{t}-\gamma v a_{x}, \gamma a_{x}-\gamma v a_{t}\right) \\
= & (\cosh (\alpha \tau) \alpha \sinh (\alpha \tau)-\sinh (\alpha \tau) \alpha \cosh (\alpha \tau), \\
& \cosh (\alpha \tau) \alpha \cosh (\alpha \tau)-\sinh (\alpha \tau) \alpha \sinh (\alpha \tau)) \tag{7}\\
= & (0, \alpha)
\end{align*}
$$

which is what needed to be shown. We may interpret α as Galilean acceleration by the following argument. At the moment $t=0$, the lab frame coincides with the MCFR. At this time, we may compute $\left.\frac{d^{2} x}{d t^{2}}\right|_{t=0}$ using the expression for $x(t)$ below, and find that it equals α.

Part (b): For the uniformly accelerated trajetcory above, we are asked to find the position as a function of t, the velocity as a function of t, and the time t needed to reach speed 0.999c. Notice that

$$
\begin{equation*}
x^{2}-t^{2}=1 / \alpha^{2} \tag{8}
\end{equation*}
$$

so we may immediately conclude

$$
\begin{equation*}
x(t)=\sqrt{\frac{1}{\alpha^{2}}+t^{2}} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
v(t)=\frac{d x}{d t}=\frac{t}{\sqrt{\frac{1}{\alpha^{2}}+t^{2}}} \tag{10}
\end{equation*}
$$

This equation may be solved for t as

$$
\begin{equation*}
t(v)=\frac{v}{\alpha \sqrt{1-v^{2}}} \tag{11}
\end{equation*}
$$

Setting $\alpha=10$ and being careful here about units, we find

$$
\begin{equation*}
t(0.999 c)=\frac{0.999 c}{10 \sqrt{1-(0.999)^{2}}}=6.7 \times 10^{8} \mathrm{~s} \tag{12}
\end{equation*}
$$

Part (c): We are asked to find the elapsed proper time to reach .999 c , and the elapsed proper time to travel a distance $2 \times 10^{20} \mathrm{~m}$. First, find $\tau(t)$ by integrating $d \tau$ (or alternatively, just invert equation (1)):

$$
\begin{align*}
\tau(t) & =\int_{0}^{t} d \tau=\int_{0}^{t} \sqrt{1-v(t)^{2}} d t=\int_{0}^{t} \sqrt{1-\frac{t^{2}}{\frac{1}{\alpha^{2}}+t^{2}}} d t \tag{13}\\
& =\frac{1}{\alpha} \ln \left(\alpha t+\sqrt{1+(\alpha t)^{2}}\right)
\end{align*}
$$

Using the value of t from part (b), we find the proper time to reach 0.999 c is $1.14 \times 10^{8} \mathrm{~s}$, or 3.6 years.

To travel a distance of $2 \times 10^{20} \mathrm{~m}$, notice that our starting x-coordinate is actually $x(0)=1 / \alpha$, which in appropriate units is $9 \times 10^{15} \mathrm{~m}$. However, for distances much larger than this,

$$
\begin{equation*}
t(x)=\sqrt{x^{2}-\frac{1}{\alpha^{2}}} \approx x \tag{14}
\end{equation*}
$$

So let us use this approximation and convert units to get the time coordinate

$$
\begin{equation*}
t \approx 6.67 \times 10^{11} \mathrm{~s} \tag{15}
\end{equation*}
$$

and then use equation (13) to find the proper time:

$$
\begin{equation*}
\tau=3.21 \times 10^{8} \mathrm{~s}=10.2 \text { years } \tag{16}
\end{equation*}
$$

