
Math. 460 (Fulling) 7 October 2019

Midterm Test – Solutions

1. (40 pts.)

(a) Explain in modern language (multilinear functionals and all that) what a
(1
1

)

tensor
is. (Call the tensor T .)

[This is on the “essay question” borderline, so I won’t provide a model answer. But you should define
“multilinear” (or, better, “bilinear”).]

(b) Suppose that we are working in Minkowski space (the standard 4-dimensional flat
space-time). How do the components of T change under a Lorentz transformation?

To make the notation precise: Let Λα
β map the coordinates (t, x, y, z) into the coordinates

(t, x, y, z) . Write the new tensor components {Tµ
ν} in terms of the old ones, {Tκ

λ} .

T
µ
ν = Λµ

κΛ
λ
νT

κ
λ .

Here Λλ
ν is the matrix of the coordinate transformation in the opposite direction. Note that equiv-

alent, more abstract formulas are

T = ΛTΛ−1 (similarity transformation of matrices)

and

T = Λ(Λ−1)tT

(if you think of the transformation matrices as acting sequentially on the two indices of the tensor T ).

(c) The trace of T is the number Tµ
µ (summation convention in force). Show that the

trace is the same, no matter what coordinate system (or basis) is used.

T
µ
µ = Λµ

κΛ
λ
µT

κ
λ = δ

λ
κT

κ
λ = T

κ
κ .

(d) Does it matter whether the transformation in (c) is a Lorentz transformation (rather
than an arbitrary invertible linear transformation)?

No. All we used is the existence of the inverse. (However, in the general case it would be nonstandard

and probably confusing to denote the matrix and its inverse by the same letter without a “ −1 ”.)
The formula even applies to a nonlinear (curvilinear) coordinate transformation if you take

Λα
β =

∂xα

∂xβ

(the Jacobian matrix, which is the matrix of a linear transformation of vectors based at the point
concerned).
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(e) Is the trace of a
(0
2

)

tensor (
∑3

α=0 Tαα ) independent of coordinate system? Explain.

No. This time we get
∑

µ

Tµµ =
∑

µ

Λκ
µΛ

λ
µTκλ ,

and there is no reason why
∑

µ
Λκ

µΛ
λ
µ should equal δκλ in general (even if Λ is Lorentz). Here

is an explicit counterexample in dimension 2:

Λ =

(

C S

S C

)

, T =

(

a 0

0 d

)

.

ΛTΛt =

(

C2a+ S2d SCa+ SCd

SCa+ SCd S2a+ C2d

)

,

tr (ΛTΛt) = (C2 + S
2)(a+ d) 6= trT = a+ d.

For comparison, if C = cosh θ , S = sinh θ , then Λ is a Lorentz transformation, and if T represents

a
(

1

1

)

tensor, we have

trΛTΛ−1 = (C2 − S
2)(a+ d) = a+ d,

as expected.

2. (Essay – 10 pts.) In the Brans–Stewart periodic universe, an observer in motion ages more
slowly than an observer at rest (as determined by comparison of clocks at their reunion).
Yet each is always in uniform motion relative to the other, at the same speed. Explain
why this does not contradict the “principle of relativity”.

3. (50 pts.) In some region around the origin in two-dimensional Minkowski space, introduce
new coordinates (τ , σ) by

t = τ + 1
2ǫσ

2 , x = 1
2ǫτ

2 + σ,

where ǫ is some small constant.

(a) Find the metric tensor, {gµν} , (or, equivalently, the line element, ds2 ) in the new
coordinates.

Ẽ
t ≡ dt = dτ + ǫσ dσ, Ẽ

x ≡ dx = ǫτ dτ + dσ. (∗)

Thus

dx
2 = −(dt)2 + (dx)2

= −dτ
2 − 2ǫσ dτ dσ − ǫ

2
σ
2
dσ

2

+ ǫ
2
τ
2
dτ

2 + 2ǫτ dτ dσ + dσ
2

= −(1− ǫ
2
τ
2)dτ2 + 2ǫ(τ − σ)dτ dσ + (1− ǫ

2
σ
2)dσ2

.

In other words,

g =

(

−(1− ǫ2τ2) ǫ(τ − σ)

ǫ(τ − σ) 1− ǫ2σ2

)

.
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(b) Find the tangent vectors to the coordinate curves, ~eτ and ~eσ .

~eτ =
∂t

∂τ
~et +

∂x

∂τ
~ex = ~et + ǫτ~ex ,

~eσ =
∂t

∂σ
~et +

∂x

∂σ
~ex = ǫσǫt +~ex .

(†)

These can be written in matrix notation as

~eτ =

(

1

ǫτ

)

, ~eσ =

(

ǫσ

1

)

.

(c) Find the Christoffel symbols ( Γτσσ , etc.).

The basic equation here is
d~eν

dxµ
= Γλ

µν~eλ ,

where xµ ≡ (τ, σ) . We find

Γλ
τσ~eλ =

d~eτ

dσ
= 0, Γλ

στ~eλ =
d~eσ

dτ
= 0,

Γλ
ττ~eλ =

d~eτ

dτ
= ǫ~ex , Γλ

σσ~eλ =
d~eσ

dσ
= ǫ~et .

The first two equations (actually, either one of them) yield

Γλ
τσ = 0 = Γλ

στ for all λ .

For the other two equations we need to do more work. Solve the equations (†) :

~et = (1− ǫ
2
τσ)−1(~eτ − ǫτ~eσ), ~ex = (1− ǫ

2
τσ)−1(−ǫσ~eτ +~eσ).

Substituting these into the remaining Christoffel equations and comparing with the basie equation,
we see

Γτ
ττ =

−ǫ2σ

1− ǫ2τσ
, Γσ

σσ =
−ǫ2τ

1− ǫ2τσ
,

Γσ
ττ =

ǫ2

1− ǫ2τσ
, Γτ

σσ =
ǫ2

1− ǫ2τσ
.

(d) Find the normal one-forms to the coordinate “surfaces”, d̃τ and d̃σ (also called Ẽτ

and Ẽσ ).

We need to solve the equations (∗) . The matrix to be inverted is the transpose of the one we inverted
to solve (†) , so we immediately get

Ẽ
τ = (1− ǫ

2
τσ)−1(Ẽt − ǫσẼ

x) = (1− ǫ
2
τσ)−1(1,−ǫσ),

Ẽ
σ = (1− ǫ

2
τσ)−1(−ǫτẼ

t + Ẽ
x) = (1− ǫ

2
τσ)−1(−ǫτ , 1).
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(e) Verify that the basis you found in (d) is dual to the basis you found in (b). (Explain
what “dual” means in this context.)

We want to check that Ẽλ(~eκ) = δλκ in all cases. This is easily done with the row and column matrix
forms we found:

Ẽ
τ (~eτ ) = (1− ǫ

2
τσ)−1(1,−ǫσ)

(

1

ǫτ

)

= 1,

Ẽ
τ (~eσ) = (1− ǫ

2
τσ)−1(1,−ǫσ)

(

ǫσ

1

)

= 0,

and similarly for the other two.

(f) (Bonus question – 5 points) Can you say anything about how far from the origin we
can go before something “goes wrong” with this coordinate system? Suggestion: Look
at the determinant of the metric tensor.

det g = −(1− ǫ
2
τ
2)(1− ǫ

2
σ
2)− ǫ

2(τ − σ)2 = [seven terms]

= −1 + 2ǫ2τσ − ǫ
4
τ
2
σ
2 = −(1− ǫ

2
τσ)2.

Therefore, the metric is singular wherever τσ = ǫ−2 (and nowhere else, since the metric components
are never singular). This locus is a hyperbola in the (τ, σ) plane; the origin sits in a region between
the two branches of the hyperbola, inside which the metric is regular. It would be nicer to have
formulas for the images of these boundary curves in the (t, x) plane, but that seems hard to get.
The region is large, because we assumed ǫ to be small.


